

Contents

Design	Patterns	in	Swift
StoryShop
Copyright
Half	Title
Preface
Introduction
Part	One	-	SOLID
1)	SOLID	-	Single	Responsibility	Principle	(SRP)
2)	SOLID	-	Open	Closed	Principle	(OCP)
3)	SOLID	-	Liskov	Substitution	Principle	(LSP)
4)	SOLID	-	Interface	Segregation	Principle	(ISP)
5)	SOLID	-	Dependency	Inversion	Principle	(DIP)
Part	Two	-	Creational
6)	Creational	-	Factory	Design	Pattern
8)	Creational	-	Prototype	Design	Pattern
9)	Creational	-	Singleton	Design	Pattern
Part	Three	-	Structural
10)	Structural	-	Adapter	Design	Pattern
11)	Structural	-	Bridge	Design	Pattern
12)	Structural	-	Composite	Design	Pattern
13)	Structural	-	Decorator	Design	Pattern
14)	Structural	-	Facade	Design	Pattern
15)	Structural	-	FlyWeight	Design	Pattern
16)	Structural	-	Proxy	Design	Pattern
Part	Four	-	Behavioural
17)	Behavioural	-	Chain	of	Responsibility	Design	Pattern
18)	Behavioural	-	Strategy	Design	Pattern
20)	Behavioural	-	Iterator	Design	Pattern
21)	Behavioural	-	Interpreter	Design	Pattern
22)	Behavioural	-	Mediator	Design	Pattern
23)	Behavioural	-	Memento	Design	Pattern
24)	Behavioural	-	Null	Object	Design	Pattern
25)	Behavioural	-	Observer	Design	Pattern
26)	Behavioural	-	State	Design	Pattern
27)	Behavioural	-	Template	Design	Pattern

28)	Behavioural	-	Visitor	Design	Pattern
Final	note:

Design	Patterns
in	Swift

Vamshi	Krishna

(Non)Fiction	Vortex™

Join	the	Story	with
our	groundbreaking	mobile	app,

StoryShop.
We	are	redefining	digital	narrative.

http://storyshop.io/reader

Design	Patterns	in	Swift
Vamshi	Krishna

Electronic	Edition	Copyright	©	2018	by	Fiction	Vortex.	All	rights	reserved.
Print	Edition	Copyright	©	2018	by	Fiction	Vortex.	All	rights	reserved.

No	part	of	this	publication	may	be	reproduced,	stored	in	a	retrieval	system,	or	transmitted	in	any	way	by
any	means,	electronic,	mechanical,	photocopy,	recording	or	otherwise	without	the	prior	permission	of	the
author	except	as	provided	by	USA	copyright	law.

ISBN:	978-1-947655-16-4
Published	by	Fiction	Vortex,	Inc.	(FV	Press)
Nampa,	ID	83651
http://www.fictionvortex.com	

Cover	by	Tom	Patchin

Published	in	the	United	States	of	America

http://www.fictionvortex.com

Design	Patterns
in	Swift

Vamshi	Krishna

Preface

Design	Patterns	-	I	came	across	this	term	for	the	first	time	in	my	life	in	a	job
interview	(mind	you,	I	was	almost	two	years	into	iOS	Development	then).	I	got
back	home	and	googled	about	them.	It	was	embarrassing	and	interesting	at	the
same	time,	as	I	found	out	that	I	had	been	using	a	few	of	those	patterns	without
actually	realising	that	I	was	doing	so.	

I	forgot	about	that	incident	after	several	days	and	got	back	to	my	work.	Fast
forward	two	years,	I	was	back	at	job	searching	and	this	time	I	decided	to	learn	in
depth	about	design	patterns.	As	a	seasoned	iOS	Developer,	I	was	initially
looking	to	learn	the	concepts	through	examples	coded	in	Swift	language.	

Surprisingly,	I	could	not	find	a	single	book	or	blog	discussing	design	patterns	in
detail	in	the	Swift	language.	There	are	tons	of	books	and	blogs	discussing	them
in	Java,	C#,	PHP,	etc.	

For	someone	who	codes	in	Swift,	it	only	takes	a	little	effort	to	understand	Java.
So,	I	started	learning	the	design	patterns	from	different	sources	available	on	the
Internet	through	Java	examples.	For	practice,	I	started	putting	up	a	few	examples
in	Swift	for	each	of	the	design	patterns.

Personally,	cricket	is	something	that	I	understand	in	and	out.	I	can	almost	relate
anything	under	the	sun	to	a	situation	in	cricket	(okay,	that’s	a	bit	of	an
exaggeration).	

So,	I	decided,	instead	of	using	different	contexts	for	each	of	the	design	pattern
examples,	I	would	be	using	cricketing	terms	for	all	the	examples	I	would	be
coding.	I	believe	cricket	is	a	very	simple	game,	and	even	for	those	who	do	not
follow	the	game,	it	should	not	be	a	big	effort	to	relate	to	the	cricketing	terms.	

That’s	when	I	decided	instead	of	just	letting	the	code	reside	on	my	Mac,	I	would
put	a	little	more	effort	to	take	it	to	book	form.	That’s	how	this	book	was	born,
and	I	am	sure	your	understanding	on	design	patterns	will	be	enhanced	by	the
time	you	finish	reading	this	book.

I	would	suggest	you	code	the	examples	(not	copy-paste,	but	type	each	and	every
line	of	the	code)	in	your	Xcode	playground	and	see	the	results	for	yourself.	Then
imagine	a	scenario	where	you	would	apply	such	a	design	pattern,	and	code	an
example	for	yourself.	

I	believe	that’s	how	coding	is	learned.	

Happy	learning.

Introduction

Wikipedia	says,	“In	software	engineering,	a	software	design	pattern	is	a
general,	reusable	solution	to	a	commonly	occurring	problem	within	a	given
context	in	software	design”.

In	a	general	sense,	design	patterns	can	be	stated	as	best	practices	that	were
implemented	on	a	repetitive	basis	to	solve	similar	problems,	but	that	are	found	in
different	contexts.	

Design	patterns	are	not	finished	designs	that	can	be	directly	transformed	into
code.	But	the	templates	can	help	as	a	bridge	between	the	levels	of	a
programming	paradigm	and	concrete	algorithm.	These	templates	can	also	be
used	to	solve	a	specific	type	of	problem	that	can	occur	in	different	programming
situations.

The	popularity	of	design	patterns	came	about	after	being	formalised	in	the	book
Design	Patterns:	Elements	of	Reusable	Object-Oriented	Software	by	the	so-
called	Gang	of	Four.

Design	patterns	are	very	popular	in	Java	and	C#,	but	they	can	be	applied	to	all
object	oriented	languages.	They	are	universally	relevant	because	we	are	living	in
a	world	where	object	oriented	paradigms	are	used	on	a	daily	basis.	Object
oriented	design	patterns	mainly	shows	the	interactions	and	relationships	between
classes	or	objects.

Interestingly,	most	developers	have	been	using	design	patterns	(at	least	a	few	of
them)	for	many	years	without	actually	realising	that	they	are	doing	so.

Design	patterns	on	a	broad	level	can	be	divided	into	four	types,	namely:

1.	 SOLID	Design	Principles
2.	 Creational
3.	 Structural
4.	 Behavioural

SOLID	design	principles,	introduced	by	Robert	C.	Martin,	are	relevant	across	all
of	the	remaining	three	design	patterns.	SOLID	is	an	acronym	for	the	set	of	five
design	principles	intended	to	make	software	designs	more	understandable,
flexible,	and	maintainable.	It’s	better	to	be	aware	of	them	before	moving	on	to
the	other	patterns.

Prerequisites:

1.	 Basic	understanding	of	Swift
2.	 Good	understanding	of	object	oriented	programming

Contents:

1.	 SOLID	-	Single	Responsibility	Principle
2.	 SOLID	-	Open	Closed	Principle
3.	 SOLID	-	Liskov	Substitution	Principle
4.	 SOLID	-	Interface	Segregation	Principle
5.	 SOLID	-	Dependency	Inversion	Principle
6.	 Creational	-	Factory	Design	Pattern
7.	 Creational	-	Builder	Design	Pattern
8.	 Creational	-	Prototype	Design	Pattern
9.	 Creational	-	Singleton	Design	Pattern
10.	 Structural	-	Adapter	Design	Pattern
11.	 Structural	-	Bridge	Design	Pattern
12.	 Structural	-	Composite	Design	Pattern
13.	 Structural	-	Decorator	Design	Pattern
14.	 Structural	-	Facade	Design	Pattern
15.	 Structural	-	FlyWeight	Design	Pattern

16.	 Structural	-	Proxy	Design	Pattern
17.	 Behavioural	-	Chain	of	Responsibility	Design	Pattern
18.	 Behavioural	-	Strategy	Design	Pattern
19.	 Behavioural	-	Command	Design	Pattern
20.	 Behavioural	-	Iterator	Design	Pattern
21.	 Behavioural	-	Interpreter	Design	Pattern
22.	 Behavioural	-	Mediator	Design	Pattern
23.	 Behavioural	-	Memento	Design	Pattern
24.	 Behavioural	-	Null	Object	Design	Pattern
25.	 Behavioural	-	Observer	Design	Pattern
26.	 Behavioural	-	State	Design	Pattern
27.	 Behavioural	-	Template	Design	Pattern
28.	 Behavioural	-	Visitor	Design	Pattern

Part	One:	SOLID

1)	SOLID	-	Single	Responsibility	Principle	(SRP)
Definition:

Single	responsibility	principle	says	a	class	should	have	one,	and	only	one,	reason
to	change.	Every	class	should	be	responsible	for	a	single	part	of	the	functionality,
and	that	responsibility	should	be	entirely	encapsulated	by	the	class.	This	makes
your	software	easier	to	implement	and	prevents	unexpected	side-effects	of	future
changes.

Usage:

Let	us	design	an	imaginary	operation	system	for	a	cricket	tournament.	For	the
sake	of	simplicity,	let’s	have	two	major	operations:	1)A	TeamRegister	class,
which	helps	for	checking	in	and	checking	out	cricketers.	2)A	TeamConveyance
class,	which	is	used	to	drop	the	players	from	hotel	to	stadium	and	to	pick	them
up	from	the	stadium	after	the	match	is	over.

Every	class	is	assigned	its	own	responsibility	and	they	will	be	responsible	only
for	that	action.

import	UIKit
import	Foundation

class	TeamRegister	:	CustomStringConvertible{

				var	teamMembers	=	[String]()
				var	memberCount	=	0
				
				func	checkInGuest	(_	name	:	String)	->	Int{
								

								memberCount	+=	1
								teamMembers.append("\(memberCount)	-	\(name)")
								return	memberCount	-	1
								
				}
				
				func	checkOutGuest	(_	index	:	Int)	{
								teamMembers.remove(at:	index)
				}
				
				var	description:	String{
								return	teamMembers.joined(separator:	"\n")
				}
}

TeamRegister	class	conforms	to	CustomStringConvertible.	It	has	two	variables
defined,	an	array	named	teamMembers	of	type	String	and	memberCount	of	type
Integer.

We	also	define	two	methods.	checkInGuest	method	takes	the	guest	name	as	a
parameter	of	type	String	and	appends	the	guest	to	teamMembers	array	and
returns	array	count.

checkOutGuest	takes	index	of	type	Integer	as	a	parameter	and	removes	the	guest
from	register.

class	TeamConveyance	{
				
				func	takePlayersToStadium(_	teamRegister	:	TeamRegister){
								print("Taking	players	\n	\(teamRegister.description)	\n	to	the	Stadium")
				}
				
				func	dropPlayersBackAtHotel(){
								print("Dropping	all	the	players	back	at	Hotel")
				}	
}

TeamConveyance	class	has	two	major	responsibilities.	takePlayersToStadium
takes	a	parameter	of	type	TeamRegister	and	drops	all	the	players	at	the	stadium.

dropPlayersBackAtHotel	gets	back	all	the	players	to	the	hotel	after	the	match	is
over.	It	is	not	concerned	about	anything	else.

Let	us	now	write	a	function	called	main	and	see	the	code	in	action.

func	main(){
				let	teamRegister	=	TeamRegister()
				let	player1	=	teamRegister.checkInGuest("PlayerOne")
				let	player2	=	teamRegister.checkInGuest("PlayerTwo")
				
				print(teamRegister)
}

main()

We	take	an	instance	of	TeamRegister	class	and	check	in	a	couple	of	guests
passing	their	names	as	parameters.

Output	in	the	Xcode	console:

1	-	PlayerOne
2	-	PlayerTwo

Let	us	now	check	out	a	guest	and	add	one	more	guest	to	the	team.	Change	the
main	function	to:

func	main(){
				let	teamRegister	=	TeamRegister()
				let	player1	=	teamRegister.checkInGuest("PlayerOne")
				let	player2	=	teamRegister.checkInGuest("PlayerTwo")
				
				print(teamRegister)
				
				teamRegister.checkOutGuest(1)
				print("------------------------------------")
				print(teamRegister)
				
				let	player3	=	teamRegister.checkInGuest("PlayerThree")

				print("------------------------------------")
				print(teamRegister)
}

main()

We	checked	out	‘PlayerTwo’	and	then	checked	in	another	guest	named
‘PlayerThree’.

Output	in	the	Xcode	console:

1	-	PlayerOne
2	-	PlayerTwo

1	-	PlayerOne

1	-	PlayerOne
3	-	PlayerThree

Now	change	the	main	method	to	the	following:

func	main(){
				let	teamRegister	=	TeamRegister()
				let	player1	=	teamRegister.checkInGuest("PlayerOne")
				let	player2	=	teamRegister.checkInGuest("PlayerTwo")
				
				print(teamRegister)
				
				teamRegister.checkOutGuest(1)
				print("------------------------------------")
				print(teamRegister)
				
				let	player3	=	teamRegister.checkInGuest("PlayerThree")

				print("------------------------------------")
				print(teamRegister)
				
				print("------------------------------------")
				let	teamBus	=	TeamConveyance()

				teamBus.takePlayersToStadium(teamRegister)
				
				print("-------Match	Over	----------")
				teamBus.dropPlayersBackAtHotel()
}

main()

We	are	taking	an	instance	of	TeamConveyance	to	drop	players	at	the	stadium
and	get	them	back	to	the	hotel	after	the	match	is	over.

Output	in	the	Xcode	console:

1	-	PlayerOne
2	-	PlayerTwo

1	-	PlayerOne

1	-	PlayerOne
3	-	PlayerThree

Taking	players	
1	-	PlayerOne
3	-	PlayerThree	
	to	the	Stadium
-------Match	Over	----------
Dropping	all	the	players	back	at	Hotel

2)	SOLID	-	Open	Closed	Principle	(OCP)
Definition:

Open	closed	principle	says	one	should	be	able	to	extend	a	class	behaviour
without	modifying	it.	This	principle	is	the	foundation	for	building	code	that	is
maintainable	and	reusable.

Any	class	following	OCP	should	fulfill	two	criteria:

1.	 1)	 Open	for	extension:	This	ensures	that	the	class	behaviour	can	be
extended.	In	a	real	world	scenario,	requirements	keep	changing,	and	in
order	for	us	to	be	able	to	accommodate	those	changes,	classes	should	be
open	for	extension	so	that	they	can	behave	in	a	new	way.

1.	 2)	 Closed	for	modification:	Code	inside	the	class	is	written	in	such	a	way
that	no	one	is	allowed	to	modify	the	existing	code	under	any	circumstances.

Usage:

Let	us	consider	an	example	where	we	have	an	array	of	cricketers’	profiles,	where
each	entity	has	the	name	of	a	cricketer,	his	team,	and	his	specialisation	as	the
attributes.	Now	we	want	to	build	a	system	where	the	client	can	apply	filters	on
the	data	based	on	different	criteria	like	team,	role	of	the	player,	etc.	Let	us	see
how	we	can	use	OCP	to	build	this:

import	Foundation
import	UIKit

enum	Team{
				case	india
				case	australia
				case	pakistan
				case	england
}

enum	Role{
				case	batsman
				case	bowler
				case	allrounder
}

Enumeration	is	a	data	type	that	allows	us	to	define	a	list	of	possible	values.	We
define	enums	for	the	available	names	of	the	teams	and	roles	of	the	cricketers.

class	Cricketer{
				
				var	name:String
				var	team:Team
				var	role:Role
				
				init(_	name:String,	_	team:Team,	_	role:Role)	{
								self.name	=	name
								self.team	=	team
								self.role	=	role
				}
				
}

We	then	define	a	class	called	Cricketer,	which	takes	three	parameters	during	its
initialisation:	name	of	type	String,	team	of	type	Team,	and	role	of	type	Role.

Now,	assume	one	of	the	client	requirements	is	to	provide	a	filter	of	cricketers
based	on	their	team.	

class	CricketerFilter{

					func	filterByTeam(_	cricketers:[Cricketer],	_	team:Team)	->	[Cricketer]{
								var	filteredResults	=	[Cricketer]()
								for	item	in	cricketers{
												if	item.team	==	team{
																filteredResults.append(item)
												}
								}
								return	filteredResults
				}

}

We	write	a	class	called	CricketerFilter	and	define	a	method	filterByTeam	to	filter
the	player	profiles	based	on	their	team.	It	takes	an	array	of	type	Cricketer	and
team	of	type	Team	as	parameters	and	returns	a	filtered	array	of	type	Cricketer.	

For	each	cricketer	in	the	given	array,	we	check	if	his	team	is	the	same	as	that	of
the	given	team	for	the	filter,	then	add	him	to	the	filtered	array.	Let	us	see	this
code	in	action.	Add	the	below	code	after	CricketerFilter	class.

func	main(){
				let	dhoni	=	Cricketer("Dhoni",	.india,	.batsman)
				let	kohli	=	Cricketer("Kohli",		.india,	.batsman)
				let	maxi	=	Cricketer("Maxwell",	.australia,	.allrounder)
				let	smith	=	Cricketer("Smith",	.australia,	.batsman)
				let	symo	=	Cricketer("Symonds",	.australia,	.allrounder)
				let	broad	=	Cricketer("Broad",	.england,	.bowler)
				let	ali		=	Cricketer("Ali",	.pakistan,	.batsman)
				let	stokes	=	Cricketer("Stokes",	.england,	.allrounder)
				
				let	cricketers	=	[dhoni,	kohli,	maxi,	broad,	ali,	stokes	,smith,	symo]
				print("	Indian	Cricketers")
				let	cricketerFilter	=	CricketerFilter()
				for	item	in	cricketerFilter.filterByTeam(cricketers,	.india){
								print("	\(item.name)	belongs	to	Indian	Team")
				}
}

main()

Output	in	the	Xcode	console:

	Indian	Cricketers
	Dhoni	belongs	to	Indian	Team
	Kohli	belongs	to	Indian	Team

Assume,	after	a	few	days,	we	got	a	new	requirement	to	be	able	to	filter	by	role	of
the	cricketer	and	then	to	filter	by	both	team	and	role	at	once.	Our	CricketerFilter
class	would	look	something	like	this:

class	CricketerFilter{

				func	filterByRole(_	cricketers:[Cricketer],	_	role:Role)	->	[Cricketer]{
								var	filteredResults	=	[Cricketer]()
								for	item	in	cricketers{
												if	item.role	==	role{
																filteredResults.append(item)
												}
								}
								return	filteredResults
				}

				func	filterByTeam(_	cricketers:[Cricketer],	_	team:Team)	->	[Cricketer]{
								var	filteredResults	=	[Cricketer]()
								for	item	in	cricketers{
												if	item.team	==	team{
																filteredResults.append(item)
												}
								}
								return	filteredResults
				}
				
				func	filterByRoleAndTeam(_	cricketers:[Cricketer],	_	role:Role,	_
team:Team)	->	[Cricketer]{
								var	filteredResults	=	[Cricketer]()
								for	item	in	cricketers{
												if	item.role	==	role	&&	item.team	==	team{
																filteredResults.append(item)

												}
								}
								return	filteredResults
				}

}

This	logic	is	quite	similar	to	filterByTeam	method,	except	with	filterByRole,	we
check	if	the	player’s	role	is	the	same	as	that	of	the	given	role.	For
filterByRoleAndTeam	method,	we	use	AND	statement	to	check	if	the	given
condition	is	met.

The	OCP	states	that	classes	should	be	closed	for	modification	and	open	for
extension.	But,	here	we	are	clearly	breaking	this	principle.	Let	us	see	how	the
same	use	case	can	be	served	with	the	help	of	OCP.

//Conditions
protocol	Condition{
				associatedtype	T
				func	isConditionMet(_	item:	T)	->	Bool
}

We	begin	by	defining	a	protocol	called	Condition,	which	basically	checks	if	a
particular	item	satisfies	some	criteria.	We	have	a	function	called	isConditionMet,
which	takes	an	item	of	generic	type	T	and	returns	a	boolean	indicating	whether
the	item	meets	the	given	criteria.

protocol	Filter
{
				associatedtype	T
				func	filter<Cond:	Condition>(_	items:	[T],	_	cond:	Cond)	->	[T]
				where	Cond.T	==	T;
}

We	then	define	a	protocol	named	Filter	that	has	a	function	called	filter,	which
takes	an	array	of	items	of	generic	type	T	and	a	condition	of	type	Condition	as
parameters	and	returns	the	filtered	array.

We	now	use	the	above	generic	type	Filter	to	write	conditions	for	role	and	team.

class	RoleCondition	:	Condition
{
				typealias	T	=	Cricketer
				let	role:	Role
				init(_	role:	Role)
				{
								self.role	=	role
				}
				
				func	isConditionMet(_	item:	Cricketer)	->	Bool	{
								return	item.role	==	role
				}
}

class	TeamCondition	:	Condition
{
				typealias	T	=	Cricketer
				let	team:	Team
				init(_	team:	Team)
				{
								self.team	=	team
				}
				
				func	isConditionMet(_	item:	Cricketer)	->	Bool	{
								return	item.team	==	team
				}
}

In	each	of	the	methods,	we	write	the	logic	of	isConditionMet	protocol	method	to
see	if	the	item	meets	the	criteria	and	returns	a	boolean.

class	OCPCricketFilter	:	Filter
{
				typealias	T	=	Cricketer
				
				func	filter<Cond:	Condition>(_	items:	[Cricketer],	_	cond:	Cond)
								->	[T]	where	Cond.T	==	T
				{

								var	filteredItems	=	[Cricketer]()
								for	i	in	items
								{
												if	cond.isConditionMet(i)
												{
																filteredItems.append(i)
												}
								}
								return	filteredItems
				}
}

Now	we	define	a	brand	new	filter	called	OCPCricketFilter,	usage	of	which	does
not	violate	OCP.	We	take	items	of	type	Cricketer,	check	for	the	condition	of	type
Condition,	and	return	the	filtered	array.

Let	us	now	see	the	code	in	action.	Change	the	main	method	to	the	following:

func	main(){
				let	dhoni	=	Cricketer("Dhoni",	.india,	.batsman)
				let	kohli	=	Cricketer("Kohli",		.india,	.batsman)
				let	maxi	=	Cricketer("Maxwell",	.australia,	.allrounder)
				let	smith	=	Cricketer("Smith",	.australia,	.batsman)
				let	symo	=	Cricketer("Symonds",	.australia,	.allrounder)
				let	broad	=	Cricketer("Broad",	.england,	.bowler)
				let	ali		=	Cricketer("Ali",	.pakistan,	.batsman)
				let	stokes	=	Cricketer("Stokes",	.england,	.allrounder)
				
				let	cricketers	=	[dhoni,	kohli,	maxi,	broad,	ali,	stokes	,smith,	symo]

				let	ocpFilter	=	OCPCricketFilter()

				print("	England	Cricketers")
				for	item	in	ocpFilter.filter(cricketers,	TeamCondition(.england)){
								print("	\(item.name)	belongs	to	English	Team")
				}
}

We	take	an	instance	of	OCPFilter	and	just	pass	the	team	name	parameter	to

TeamCondition.	

Output	in	the	Xcode	console:

	England	Cricketers
	Broad	belongs	to	English	Team
	Stokes	belongs	to	English	Team

In	a	similar	way,	without	modifying	any	existing	classes,	we	can	extend	the
OCPCricketFilter	class	to	as	many	filters	as	we	need.	Now	we	will	see	how	we
can	write	a	filter	for	AND	condition	(role	and	team	for	example):

class	AndCondition<T,
				CondA:	Condition,
				CondB:	Condition>	:	Condition
				where	T	==	CondA.T,	T	==	CondB.T
{
				
				let	first:	CondA
				let	second:	CondB
				init(_	first:	CondA,	_	second:	CondB)
				{
								self.first	=	first
								self.second	=	second
				}
				
				func	isConditionMet(_	item:	T)	->	Bool	{
								return	first.isConditionMet(item)	&&	second.isConditionMet(item)
				}
}

This	is	very	much	similar	to	other	filters.	The	only	change	is	that	it	takes	two
conditions	as	arguments	for	its	initialisation.

Change	the	main	method	to	the	below	code:

func	main(){
				let	dhoni	=	Cricketer("Dhoni",	.india,	.batsman)
				let	kohli	=	Cricketer("Kohli",		.india,	.batsman)

				let	maxi	=	Cricketer("Maxwell",	.australia,	.allrounder)
				let	smith	=	Cricketer("Smith",	.australia,	.batsman)
				let	symo	=	Cricketer("Symonds",	.australia,	.allrounder)
				let	broad	=	Cricketer("Broad",	.england,	.bowler)
				let	ali		=	Cricketer("Ali",	.pakistan,	.batsman)
				let	stokes	=	Cricketer("Stokes",	.england,	.allrounder)
				
				let	cricketers	=	[dhoni,	kohli,	maxi,	broad,	ali,	stokes	,smith,	symo]

				let	ocpFilter	=	OCPCricketFilter()

				print("	Australian	Allrounders")
				
				for	item	in	ocpFilter.filter(cricketers,
AndCondition(TeamCondition(.australia),	RoleCondition(.allrounder))){
								print("	\(item.name)	belongs	to	Australia	Team	and	is	an	Allrounder")
				}
}

Output	in	the	Xcode	console:

	Australian	Allrounders
	Maxwell	belongs	to	Australia	Team	and	is	an	Allrounder
	Symonds	belongs	to	Australia	Team	and	is	an	Allrounder

We	can	write	n	number	of	filters	without	modifying	any	existing	classes.	All	we
have	to	do	is	extend	the	Filter	class.

3)	SOLID	-	Liskov	Substitution	Principle	(LSP)
Definition:	

Liskov	substitution	principle,	named	after	Barbara	Liskov,	states	that	one	should
always	be	able	to	substitute	a	base	type	for	a	subtype.	LSP	is	a	way	of	ensuring
that	inheritance	is	used	correctly.	If	a	module	is	using	a	base	class,	then	the
reference	to	the	base	class	can	be	replaced	with	a	derived	class	without	affecting
the	functionality	of	the	module.

Usage:

Let	us	understand	LSP’s	usage	with	a	simple	example.	

import	UIKit
import	Foundation

protocol	Cricketer	{
				func	canBat()
				func	canBowl()
				func	canField()
}

We	define	a	protocol	called	Cricketer,	which	implements	three	methods	of
canBat,	canBowl,	and	canField.

class	AllRounder	:	Cricketer{
				func	canBat()	{
								print("I	can	bat")
				}
				

				func	canBowl()	{
								print("I	can	bowl")
				}
				
				func	canField()	{
								print("I	can	field")
				}
}

We	then	define	a	class	called	AllRounder,	conforming	to	Cricketer	protocol.	An
all-rounder	in	cricket	is	someone	who	can	bat,	bowl,	and	field.

class	Batsman	:	Cricketer{
				func	canBat()	{
								print("I	can	bat")
				}
				
				func	canBowl()	{
								print("I	cannot	bowl")
				}
				
				func	canField()	{
								print("I	can	field")
				}
}

We	then	define	a	class	called	Batsman,	conforming	to	Cricketer	protocol.	This	is
a	violation	of	LSP,	as	a	batsman	is	a	cricketer	but	cannot	use	Cricketer	protocol
because	he	cannot	bowl.	Let	us	now	see	how	we	can	use	LSP	in	this	scenario:

protocol	Cricketer	{
				func	canBat()
				func	canField()
}

class	Batsman	:	Cricketer{
				func	canBat()	{
								print("I	can	bat")
				}

				
				func	canField()	{
								print("I	can	field")
				}
}

We	change	the	Cricketer	protocol	and	now	make	the	Batsman	class	conform	to
Cricketer	protocol.

class	BatsmanWhoCanBowl	:	Cricketer{

				func	canBat()	{
								print("I	can	bat")
				}
				
				func	canField()	{
								print("I	can	field")
				}
				
				func	canBowl()	{
								print("I	can	bowl")
				}

}

class	AllRounder	:	BatsmanWhoCanBowl{
				
}

We	then	define	a	new	class	named	BatsmanWhoCanBowl	with	super	class	as
Cricketer	and	define	the	extra	method	of	canBowl	in	this	class.

4)	SOLID	-	Interface	Segregation	Principle	(ISP)
Definition:

The	only	motto	of	Interface	segregation	principle	is	that	the	clients	should	not	be
forced	to	implement	interfaces	they	don’t	use.	Clients	should	not	have	the
dependency	on	the	interfaces	that	they	do	not	use.

Usage:

Let	us	assume	we	are	building	a	screen	display	for	mobile,	tablet,	and	desktop
interfaces	of	an	app	that	is	used	to	display	live	scores	of	a	cricket	match.

We	will	see	how	this	can	be	achieved	without	using	ISP	and	then	using	ISP.

import	UIKit
import	Foundation

//	Before	ISP
protocol	MatchSummaryDisplay{
				func	showLiveScore()
				func	showCommentary()
				func	showLiveTwitterFeed()
				func	showSmartStats()
}

We	define	a	protocol	named	MatchSummaryDisplay,	which	has	four	methods	to
show	live	score,	commentary,	twitter	feed	about	the	match,	and	statistics	of	the
players.

enum	NoScreenEstate	:	Error

{
				case	doesNotShowLiveTwitterFeed
				case	doesNotShowSmartStats
}

extension	NoScreenEstate:	LocalizedError	{
				public	var	errorDescription:	String?	{
								switch	self	{
								case	.doesNotShowLiveTwitterFeed:
												return	NSLocalizedString("No	Screen	Estate	to	show	Live	Twitter	Feed",
comment:	"Error")
								case	.doesNotShowSmartStats:
												return	NSLocalizedString("No	Screen	Estate	to	show	Smart	Stats",
comment:	"Error")
								}
				}
}

By	default,	we	want	to	show	the	live	score	and	commentary	on	all	types	of
devices	like	mobile,	tablet,	and	desktop.	Showing	twitter	feed	and	statistics	are
optional,	depending	on	the	screen	estate	available	on	the	device.	So,	we	define
an	enum	called	NoScreenEstate	with	two	possible	cases.	We	also	write	an
extension	to	it	just	to	make	the	error	descriptions	more	clear.

class	DesktopDisplay:MatchSummaryDisplay{
				func	showLiveScore()	{
								print("Showing	Live	Score	On	Desktop")
				}
				
				func	showCommentary()	{
								print("Showing	Commentary	On	Desktop")
				}
				
				func	showLiveTwitterFeed()	{
								print("Showing	Live	Twitter	Feed	On	Desktop")
				}
				
				func	showSmartStats()	{
								print("Showing	Smart	Stats	On	Desktop")

				}
}

We	start	the	interface	design	by	defining	a	class	called	DesktopDisplay
conforming	to	MatchSummaryDisplay.	A	desktop	has	enough	screen	space
available,	and	we	show	all	the	available	data	to	the	user.

class	TabletDisplay:MatchSummaryDisplay{
				func	showLiveScore()	{
								print("Showing	Live	Score	On	Tablet")
				}
				
				func	showCommentary()	{
								print("Showing	Commentary	On	Tablet")
				}
				
				func	showLiveTwitterFeed()	{
								print("Showing	Live	Twitter	Feed	On	Tablet")
				}
				
				func	showSmartStats()	{
								do{
												let	error:	Error	=	NoScreenEstate.doesNotShowSmartStats
												print(error.localizedDescription)
												throw	error
								}	catch{
												
								}
				}
}

We	then	define	another	class	called	TabletDisplay	conforming	to
MatchSummaryDisplay.	As	the	screen	size	of	a	tablet	is	less	when	compared	to	a
desktop,	we	do	not	show	smart	stats	on	the	tablet	display.	We	throw	an	error	in
showSmartStats	method.

class	MobileDisplay:MatchSummaryDisplay{
				func	showLiveScore()	{
								print("Showing	Live	Score	On	Mobile")

				}
				
				func	showCommentary()	{
								print("Showing	Commentary	On	Mobile")
				}
				
				func	showLiveTwitterFeed()	{
								do{
												let	error:	Error	=	NoScreenEstate.doesNotShowLiveTwitterFeed
												print(error.localizedDescription)
												throw	error
								}	catch{
												
								}
				}
				
				func	showSmartStats()	{
								do{
												let	error:	Error	=	NoScreenEstate.doesNotShowSmartStats
												print(error.localizedDescription)
												throw	error
								}	catch{
												
								}
				}
}

We	then	define	another	class	called	MobileDisplay	conforming	to
MatchSummaryDisplay.	As	the	screen	size	of	mobile	is	even	smaller	when
compared	to	desktop	and	tablet,	we	do	not	show	smart	stats	and	twitter	feed	on
mobile	display.	We	throw	an	error	in	showLiveTwitterFeed	and	showSmartStats
methods.

As	you	can	see,	this	approach	violates	ISP	because	TabletDisplay	and
MobileDisplay	are	forced	to	implement	methods	they	are	not	using.	Let’s	see
how	we	can	use	ISP	in	this	scenario.

//Following	ISP

protocol	LiveScoreDisplay{
				func	showLiveScore()
				func	showCommentary()
}

protocol	TwitterFeedDisplay{
				func	showLiveTwitterFeed()
}

protocol	SmartStatsDisplay{
				func	showSmartStats()
}

Here	we	define	a	protocol	named	LiveScoreDisplay,	which	is	mandatory	for	all
the	screen	sizes	of	the	devices.	Then	we	define	different	protocols	called
TwitterFeedDisplay	and	SmartStatsDisplay	so	that	only	the	devices	with	enough
screen	sizes	can	conform	to	required	protocols.

class	ISPMobileDisplay:LiveScoreDisplay{
				func	showLiveScore()	{
								print("Showing	Live	Score	On	Mobile")
				}
				
				func	showCommentary()	{
								print("Showing	Commentary	On	Mobile")
				}
}

We	define	a	class	called	ISPMobileDisplay,	which	conforms	only	to
LiveScoreDisplay.	We	don’t	have	to	force	the	class	to	implement	any	unwanted
methods.	

class	ISPTabletDisplay:LiveScoreDisplay,	TwitterFeedDisplay{
				
				func	showLiveScore()	{
								print("Showing	Live	Score	On	Tablet")
				}
				
				func	showCommentary()	{

								print("Showing	Commentary	On	Tablet")
				}
				
				func	showLiveTwitterFeed()	{
								print("Showing	Live	Twitter	Feed	On	Tablet")
				}
				
}

We	then	define	a	class	called	ISPTabletDisplay,	which	conforms	to
TwitterFeedDisplay	along	with	LiveScoreDisplay.

We	can	define	desktop	interface	as	follows:

class	ISPDesktopDisplay:LiveScoreDisplay,	TwitterFeedDisplay,
SmartStatsDisplay{
				
				func	showLiveScore()	{
								print("Showing	Live	Score	On	Desktop")
				}
				
				func	showCommentary()	{
								print("Showing	Commentary	On	Desktop")
				}
				
				func	showLiveTwitterFeed()	{
								print("Showing	Live	Twitter	Feed	On	Desktop")
				}
				
				func	showSmartStats()	{
								print("Showing	Smart	Stats	On	Desktop")
				}
}

We	can	observe	that,	in	all	the	above	three	classes,	we	are	not	forcing	any	class
to	implement	a	method	that	they	do	not	use.	We	achieved	ISP	by	defining
multiple	protocols.

5)	SOLID	-	Dependency	Inversion	Principle	(DIP)
Definition:

In	short,	Dependency	inversion	principle	says	to	depend	on	abstractions,	not	on
concretions.	High-level	modules	should	not	depend	upon	low-level	modules.
Both	should	depend	upon	abstractions.

Abstractions	should	not	depend	upon	details.	Details	should	depend	upon
abstractions.	By	depending	on	higher-level	abstractions,	we	can	easily	change
one	instance	with	another	instance	in	order	to	change	the	behaviour.	DIP
increases	the	reusability	and	flexibility	of	our	code.

Usage:

Let	us	assume	we	are	designing	a	small	system	where	we	want	to	list	from	the
database	all	the	wickets	taken	by	a	bowler	in	his	cricketing	career.

import	Foundation
import	UIKit

enum	WicketsColumn{
				case	wicketTakenBy
				case	wicketGivenTo
}

class	Cricketer{
				var	name	=	""
				
				init(_	name:String){
								self.name	=	name

				}
				
}

We	define	an	enum	called	WicketsColumn	with	a	list	of	two	possible	cases.	We
then	define	a	class	called	Cricketer	that	takes	the	parameter	of	name	of	type
String	for	its	initialisation.

protocol	WicketsTallyBrowser{
				func	returnAllWicketsTakenByBowler(_	name:String)	->	[Cricketer]
}

We	define	a	protocol	named	WicketsTallyBrowser,	which	has	a	function	to
return	all	the	wickets	taken	by	a	given	bowler	as	an	array	of	type	Cricketer.

We	will	now	define	a	class,	which	stores	relationship	between	bowlers	and
batsmen.

class	WicketsTally	:	WicketsTallyBrowser	{	//Low	Level
					var	wickets	=	[(Cricketer,	WicketsColumn,	Cricketer)]()
				
				func	addToTally(_	bowler	:	Cricketer,_	batsman	:	Cricketer){
								wickets.append((bowler,	.wicketTakenBy,	batsman))
								wickets.append((batsman,	.wicketGivenTo,	bowler))
				}
				
				func	returnAllWicketsTakenByBowler(_	name:	String)	->	[Cricketer]	{
								return	wickets.filter({$0.name	==	name	&&	$1	==
WicketsColumn.wicketTakenBy	&&	$2	!=	nil})
												.map({$2})
				}
				
}

We	define	a	class	called	WicketsTally	conforming	to	WicketsTallyBrowser
protocol.	It	has	a	variable	called	wickets,	which	is	an	array	of	tuples	where	each
of	the	tuples	has	three	attributes:	one	each	of	type	Cricketer,	WicketsColumn,
and	Cricketer,	in	that	order.

Then	we	define	a	method	called	addToTally,	which	takes	parameters	of	bowler
and	batsman	of	type	Cricketer.	It	appends	the	same	to	the	wickets	array	but	with
different	relationships	available	from	WicketsColumn	enum.

In	the	definition	of	protocol	method	returnAllWicketsTakenByBowler,	we	filter
the	wickets	array	by	comparing	first	attribute	of	tuple	to	the	name	of	the	given
bowler.

class	PlayerStats{	//High	Level
				init(_	wicketsTally	:	WicketsTally){
								let	wickets	=	wicketsTally.wickets
								for	w	in	wickets	where	w.0.name	==	"BrettLee"	&&	w.1	==
.wicketTakenBy{
												print("Brett	Lee	has	a	wicket	of	\(w.2.name)")
								}
				}
}

We	now	define	a	class	called	PlayerStats,	where	we	use	the	logic	written	in
WicketsTally	class	to	return	all	the	wickets	taken	by	a	particular	bowler.

Let	us	now	write	a	main	method	to	see	this	code	in	action.

func	main(){
				let	bowler	=	Cricketer("BrettLee")
				let	batsman1	=	Cricketer("Sachin")
				let	batsman2	=	Cricketer("Dhoni")
				let	batsman3	=	Cricketer("Dravid")
				
				let	wicketsTally	=	WicketsTally()
				wicketsTally.addToTally(bowler,	batsman1)
				wicketsTally.addToTally(bowler,	batsman2)
				wicketsTally.addToTally(bowler,	batsman3)
				
				let	_	=	PlayerStats(wicketsTally)
				
}

Output	in	the	Xcode	console:

Brett	Lee	has	a	wicket	of	Sachin
Brett	Lee	has	a	wicket	of	Dhoni
Brett	Lee	has	a	wicket	of	Dravid

The	issue	with	the	above	approach	is	its	violation	of	DIP	(it	states	that	the	high-
level	modules	should	not	directly	depend	on	low-level	modules),	as	our
PlayerStats	class	depends	upon	wickets	array	of	WicketsTally	class.	It	should	be
declared	as	a	private	variable	so	that	no	other	class	can	manipulate	the	data
directly.

Let	us	now	change	the	WicketsTally	class	this	way:

class	WicketsTally	:	WicketsTallyBrowser	{	//Low	Level
					private	var	wickets	=	[(Cricketer,	WicketsColumn,	Cricketer)]()
				
				func	addToTally(_	bowler	:	Cricketer,_	batsman	:	Cricketer){
								wickets.append((bowler,	.wicketTakenBy,	batsman))
								wickets.append((batsman,	.wicketGivenTo,	bowler))
				}
				
				func	returnAllWicketsTakenByBowler(_	name:	String)	->	[Cricketer]	{
								return	wickets.filter({$0.name	==	name	&&	$1	==
WicketsColumn.wicketTakenBy	&&	$2	!=	nil})
												.map({$2})
				}
				
}

Now	change	the	PlayerStats	class	to:

class	PlayerStats{	//High	Level
				init(_	browser	:	WicketsTallyBrowser){
								for	w	in	browser.returnAllWicketsTakenByBowler("BrettLee"){
												print("Brett	Lee	has	a	wicket	of	\(w.name)")
								}
				}
}

Here	we	can	observe	that,	instead	of	directly	depending	on	wickets	array	from
WicketsTally,	PlayerStats	is	dependent	on	abstraction	from
WicketsTallyBrowser.	Output	in	the	Xcode	console	remains	the	same	but	we	are
now	adhering	to	DIP.

Output	in	the	Xcode	console:

Brett	Lee	has	a	wicket	of	Sachin
Brett	Lee	has	a	wicket	of	Dhoni
Brett	Lee	has	a	wicket	of	Dravid

Part	Two:	Creational

6)	Creational	-	Factory	Design	Pattern
Definition:

Factory	design	pattern	is	also	known	as	Virtual	Constructor.	It	is	a	creational
design	pattern	that	defines	an	abstract	class	for	creating	objects	in	super	class	but
allows	the	subclasses	to	decide	which	class	to	instantiate.

Usage:

Assume	there	is	a	BowlingMachine	that	delivers	Red	Cricket	Balls	(used	for
Test	Cricket)	and	White	Cricket	Balls	(used	for	Limited	Overs	Cricket)	based	on
user	input.

import	UIKit

protocol	CricketBall{
				func	hitMe()
}

Any	class	conforming	to	CricketBall	must	implement	hitMe	method.

class	RedBall	:	CricketBall{
				func	hitMe()	{
								print("This	ball	is	good	for	Test	Cricket")
				}
}

class	WhiteBall	:	CricketBall{
				func	hitMe()	{
								print("This	ball	is	good	for	Limited	Overs	Cricket")

				}
}

Let	us	start	defining	factories	now.

protocol	CricketBallFactory{

				init()
				func	deliverTheBall	(_	speed	:	Int)	->	CricketBall
}

Factories	conforming	to	CricketBallFactory	must	implement	deliverTheBall.	We
should	also	give	some	input	like	the	speed	at	which	we	want	the	ball	to	be
delivered.

Now,	moving	out	of	abstract	classes	creating	objects,	we	start	defining
subclasses	for	object	creation.

class	RedBallFactory{
				func	deliverTheBall	(_	speed	:	Int)	->	CricketBall{
										print("Releasing	Red	Ball	at	\(speed)	speed")
										return	RedBall()
				}
}

class	WhiteBallFactory{
				func	deliverTheBall	(_	speed	:	Int)	->	CricketBall{
								print("Releasing	White	Ball	at	\(speed)	speed")
								return	WhiteBall()
				}
}

Here	we	are	defining	two	factories	to	deliver	different	colours	of	balls.	We	input
the	speed	of	the	ball	and	get	a	red/white	ball	in	return.

It’s	time	we	go	to	the	machine	and	give	an	input	to	deliver	the	balls.

class	BowlingMachine{
				enum	AvailableBall	:	String{	

								case	redBall	=	"RedBall"
								case	whiteBall	=	"WhiteBall"
								
								static	let	all	=	[redBall,	whiteBall]
				}
				
				internal	var	factories	=	[AvailableBall	:	CricketBallFactory]()
				internal	var	namedFactories	=	[(String,	CricketBallFactory)]	()
				
				init()	{
								for	ball	in	AvailableBall.all{
												let	type	=	NSClassFromString("FactoryDesignPattern.\
(ball.rawValue)Factory")
												let	factory	=	(type	as!	CricketBallFactory.Type).init()
												factories[ball]	=	factory
												namedFactories.append((ball.rawValue,	factory))
								}
				}
				
				func	setTheBall	()	->	CricketBall{
								for	i	in	0..<namedFactories.count{
												let	tuple	=	namedFactories[i]
												print("\(i)	:	\(tuple.0)")
								}
								
								let	input	=	Int(readLine()!)!
								return	namedFactories[input].1.deliverTheBall(120)
								
				}
}

We	define	a	class	called	BowlingMachine.	We	have	an	enum	of	available	balls
with	redBall	and	whiteBall	as	the	options.	Then	we	have	an	array	of	all	the
available	balls.

We	have	an	internal	variable	called	factories,	which	is	a	dictionary	with	key	as
the	AvailableDrink	and	value	as	CricketBallFactory.	Then	we	define	a	variable
called	namedFactories,	which	is	a	list	of	tuples	where	each	entry	has	the	name	of
the	factory	and	the	instance	of	the	factory.

In	the	initialiser	method,	we	initialise	the	factory.	For	each	ball	in	available	balls,
we	get	the	type	from	actual	class.	Then	we	construct	the	factory	by	taking	the
type	and	casting	it	as	a	CricketBallFactory	and	initialising	it.	Then	we	append
each	factory	to	the	array	of	factories.

We	then	define	a	function	that	asks	us	to	set	the	ball	and	returns	a	cricket	ball.
For	each	factory,	we	print	out	the	index	and	the	name	of	the	factory.	Then	based
on	the	input	entered	by	the	user,	we	return	cricketBall	at	given	speed.

Let’s	now	define	a	function	called	main	and	see	the	code	in	action.

func	main(){
				let	bowlingMachine	=	BowlingMachine()
				print(bowlingMachine.namedFactories.count)
				let	ball	=	bowlingMachine.setTheBall()
				ball.hitMe()
}

main()

Here	we	initialise	the	BowlingMachine	and	set	the	ball.	Then	we	call	the	hitMe
method	on	the	instance	of	each	ball	the	user	inputs.

Output	in	the	Xcode	console:

2
AvailableBalls
0	:	RedBall
1	:	WhiteBall

If	we	choose	0,	we	print	‘Releasing	Red	Ball	at	20	speed’.
If	we	choose	1,	we	print	‘Releasing	White	Ball	at	20	speed’.	

Summary:

When	you	are	in	a	situation	where	a	class	does	not	know	what	subclasses	will	be
required	to	create,	or	when	a	class	wants	its	subclasses	to	specify	the	objects	to
be	created,	go	for	Factory	design	pattern.

7)	Creational	-	Builder	Design	Pattern:

Definition:

Builder	is	a	creational	design	pattern	that	helps	in	piecewise	construction	of	
complex	objects	avoiding	too	many	initialiser	arguments.	It	lets	us	produce
different	types	and	representations	of	an	object	using	the	same	process	of
building.

This	pattern	primarily	involves	three	types:	

Product	-	complex	object	to	be	created
Builder	-	handles	the	creation	of	product
Director	-	accepts	inputs	and	coordinates	with	the	builder

Usage:

Let	us	assume	we	are	creating	a	cricket	team	that	consists	of	a	captain,	batsmen,
and	bowlers.	We	will	see	how	we	can	use	Builder	pattern	in	this	context.	

We	start	with	the	Product	part	first.

import	UIKit

//MARK:	-Product
public	struct	CricketTeam{
				public	let	captain	:	Captain
				public	let	batsmen	:	Batsmen
				public	let	bowlers	:	Bowlers
}

extension	CricketTeam	:	CustomStringConvertible{
				public	var	description	:	String{
								return	"Team	with	captain	\(captain.rawValue)"
				}
}

We	first	define	CricketTeam,	which	has	properties	for	captain,	batsmen,	and

bowlers.	Once	a	team	is	set,	we	shouldn’t	be	able	to	change	its	composition.	We
also	make	CricketTeam	conform	to	CustomStringConvertible.

public	enum	Captain	:	String{
				case	Dhoni
				case	Kohli
				case	Rahane
}

We	declare	Captain	as	enum.	Each	team	can	have	only	one	captain.

public	struct	Batsmen	:	OptionSet{
				public	static	let	topOrderBatsman	=	Batsmen(rawValue:	1	<<	0)
				public	static	let	middleOrderBatsman	=	Batsmen(rawValue:	1	<<	1)
				public	static	let	lowerOrderBatsman	=	Batsmen(rawValue:	1	<<	2)
				
				public	let	rawValue	:	Int
				public	init(rawValue	:	Int){
								self.rawValue	=	rawValue
				}
}

public	struct	Bowlers	:	OptionSet{
				public	static	let	fastBowler	=	Bowlers(rawValue:	1	<<	0)
				public	static	let	mediumPaceBowler	=	Bowlers(rawValue:	1	<<	1)
				public	static	let	spinBowler	=	Bowlers(rawValue:	1	<<	2)
				
				public	let	rawValue	:	Int
				public	init(rawValue	:	Int){
								self.rawValue	=	rawValue
				}
}

We	define	Batsmen	and	Bowlers	as	OptionSet.	This	allows	us	to	try	different
combinations	of	batsmen	together,	like	a	team	with	two	topOrderBatsman	and
one	middleOrderBatsman.	Same	with	Bowlers	where	we	can	choose	a
combination	of	fastBowler,	mediumPaceBowler,	and	a	spinBowler	for	the	team.

Add	the	following	code	to	make	Builder:

//MARK:	-Builder
public	class	CricketTeamBuilder{
				
				public	enum	Error:Swift.Error{
								case	alreadyTaken
				}
				
				public	private(set)	var	captain	:	Captain	=	.Dhoni
				public	private(set)	var	batsmen	:	Batsmen	=	[]
				public	private(set)	var	bowlers	:	Bowlers	=	[]
				private	var	soldOutCaptains	:	[Captain]	=	[.Dhoni]
				
				public	func	addBatsman(_	batsman	:	Batsmen){
								batsmen.insert(batsman)
				}
				
				public	func	removeBatsman(_	batsman:	Batsmen)	{
								batsmen.remove(batsman)
				}
				
				public	func	addBowler(_	bowler	:	Bowlers){
								bowlers.insert(bowler)
				}
				
				public	func	removeBowler(_	bowler:	Bowlers)	{
								bowlers.remove(bowler)
				}

				public	func	pickCaptain(_	captain:	Captain)	throws	{
								guard	isAvailable(captain)	else	{	throw	Error.alreadyTaken	}
								self.captain	=	captain
				}
				
				public	func	isAvailable(_	captain:	Captain)	->	Bool	{
								return	!soldOutCaptains.contains(captain)
				}
				

				public	func	makeTeam()	->	CricketTeam{
								return	CricketTeam(captain:	captain,	batsmen:	batsmen,	bowlers:	bowlers)
				}

}

We	declare	properties	for	captain,	batsmen,	and	bowlers.	These	are	declared	as
var	so	that	we	can	change	the	team’s	composition	based	on	the	requirement.	We
are	using	private(set)	for	each	to	ensure	only	CricketTeamBuilder	can	set	them
directly.	

Since	each	property	is	declared	private,	we	need	to	provide	public	methods	to
change	them.	We	defined	methods	like	addBatsman,	removeBatsman,
addBowler,	removeBowler,	etc.,	for	the	purpose	of	building	the	team.

We	have	an	interesting	thing	to	note	here.	Every	team	by	default	should	have	a
captain.	Assume	you	are	starting	a	team	with	Dhoni	as	captain.	What	if	some
other	team	tries	to	choose	Dhoni	as	captain	too?	We	should	throw	some	error
using	the	array	of	soldOutCaptains.	We	check	the	availability	of	the	captains	via
isAvailable	method.

We	are	done	with	the	Builder.	Now,	let’s	build	our	Director.

//MARK:	-Director/	Maker
public	class	TeamOwner	{
				
				public	func	createTeam1()	throws	->	CricketTeam	{
								let	teamBuilder	=	CricketTeamBuilder()
								try	teamBuilder.pickCaptain(.Kohli)
								teamBuilder.addBatsman(.topOrderBatsman)
								teamBuilder.addBowler([.fastBowler,	.spinBowler])
								return	teamBuilder.makeTeam()
				}

				public	func	createTeam2()	throws	->	CricketTeam	{
								let	teamBuilder	=	CricketTeamBuilder()
								try	teamBuilder.pickCaptain(.Dhoni)
								teamBuilder.addBatsman([.topOrderBatsman,	.lowerOrderBatsman])
								teamBuilder.addBowler([.mediumPaceBowler,	.spinBowler])

								return	teamBuilder.makeTeam()
				}

}

We	have	a	class	called	TeamOwner,	who	builds	their	teams	from	the	available
options.	Each	team	is	built	taking	an	instance	of	CricketTeamBuilder,	picking	up
a	captain	and	arrays	of	different	types	of	batsmen	and	bowlers.

Now,	let’s	define	a	function	called	main	to	see	the	code	in	action.

func	main(){
				let	owner	=	TeamOwner()
				if	let	team	=	try?	owner.createTeam1(){
								print("Hello!	"	+	team.description)
				}
		
}

main()

We	try	to	use	method	createTeam1	with	captain	as	Kohli.	

Output	in	the	Xcode	console:

Hello!	Team	with	captain	Kohli

Now,	change	the	main()	to	the	following:

func	main(){
				let	owner	=	TeamOwner()
				if	let	team	=	try?	owner.createTeam1(){
								print("Hello!	"	+	team.description)
				}
				
				if	let	team	=	try?	owner.createTeam2(){
								print("Hello!	"	+	team.description)
				}	else{
								print("Sorry!	Captain	already	taken")

				}
}

main()

After	Team1,	we	are	trying	to	create	a	Team2	with	the	help	of	createTeam2()
with	Dhoni	as	captain.	But	Dhoni	is	already	taken	and	we	throw	the	error.	

Output	in	the	Xcode	console:

Hello!	Team	with	captain	Kohli
Sorry!	Captain	already	taken

Summary:

If	you	are	trying	to	use	the	same	code	for	building	different	products	to	isolate
the	complex	construction	code	from	business	logic,	Builder	design	pattern	fits
the	best.

Also,	be	careful	when	your	product	does	not	require	multiple	parameters	for
initialisation	or	construction.	In	this	instance	it’s	advised	to	stay	away	from
Builder	pattern.

8)	Creational	-	Prototype	Design	Pattern
Definition:

Prototype	is	a	creational	design	pattern	used	to	produce	new	objects	that	have
very	few	differences.	A	prototype	is	basically	a	template	of	any	object	before	the
actual	object	is	constructed.	The	Prototype	pattern	delegates	a	cloning	process	to
objects	themselves.

Usage:

Let	us	consider	a	simple	use	case	where	we	want	to	create	the	profile	of	two
cricketers,	including	their	name	and	a	custom	profile	that	includes	runs	scored
and	wickets	taken.	

import	UIKit

class	Profile	:	CustomStringConvertible{
				var	runsScored	:	Int
				var	wicketsTaken	:	Int
				
				init(_	runsScored	:	Int,	_	wicketsTaken	:	Int)	{
								self.runsScored	=	runsScored
								self.wicketsTaken	=	wicketsTaken
				}
				
				var	description:	String{
								return	"\(runsScored)	Runs	Scored	&	\(wicketsTaken)	Wickets	Taken"
				}
}

First,	we	create	a	Profile	class	that	conforms	to	CustomStringConvertible.	It	has
two	properties,	runsScored	and	wicketsTaken	of	type	int.	It	takes	the	same
parameters	during	its	initialisation.

Then	we	define	a	Cricketer	class	that	conforms	to	CustomStringConvertible.	It
has	two	properties,	name	of	type	String	and	profile	of	custom	type	Profile,	which
we	just	created.

class	Cricketer	:	CustomStringConvertible	{
				var	name	:	String
				var	profile	:	Profile
				
				init(_	name	:String	,	_	profile	:	Profile)	{
								self.name	=	name
								self.profile	=	profile
				}
				var	description:	String{
								return	"\(name)	:	Profile	:	\(profile)"
				}
				
}

Let	us	now	write	a	function	called	main	to	see	the	things	in	action.

func	main	(){
				let	profile	=	Profile(1200,	123)
				let	bhuvi	=	Cricketer("Bhuvi",	profile)
				print(bhuvi.description)
}

main()

In	the	Xcode	console	it	prints:

Bhuvi	:	Profile	:	1200	Runs	Scored	&	123	Wickets	Taken	

Now	we	need	to	talk	about	copying	the	objects.

Just	before	print	statement	in	the	main	function,	add	the	following	lines:

				var	ishant	=	bhuvi
				ishant.name	=	"Ishant"
				print(ishant.description)

In	the	Xcode	console	it	prints:

Ishant	:	Profile	:	1200	Runs	Scored	&	123	Wickets	Taken
Ishant	:	Profile	:	1200	Runs	Scored	&	123	Wickets	Taken

This	is	because	we	are	only	copying	the	references.	

Now	add	this	line	just	before	printing	ishant’s	description:

ishant.profile.runsScored	=	600

In	the	Xcode	console	it	prints:

Ishant	:	Profile	:	600	Runs	Scored	&	123	Wickets	Taken
Ishant	:	Profile	:	600	Runs	Scored	&	123	Wickets	Taken

Now	we	need	to	make	sure	bhuvi	and	ishant	actually	refer	to	different	objects.	

Here,	we	use	the	concept	of	Deep	Copy.	When	we	deep	copy	objects,	the	system
will	copy	references,	and	each	copied	reference	will	be	pointing	to	its	own
copied	memory	object.	Let	us	now	see	how	to	implement	Deep	Copy	interface
for	our	use	case.

protocol	DeepCopy{
				func	createDeepCopy	()	->	Self
}

First,	we	create	a	DeepCopy	protocol	that	defines	a	function	called
createDeepCopy	returning	self.

Then	make	the	classes	Profile	and	Cricketer	conform	to	DeepCopy	protocol.	
Classes	now	look	like	this:

class	Profile	:	CustomStringConvertible,	DeepCopy{

				var	runsScored	:	Int
				var	wicketsTaken	:	Int
				
				init(_	runsScored	:	Int,	_	wicketsTaken	:	Int)	{
								self.runsScored	=	runsScored
								self.wicketsTaken	=	wicketsTaken
				}
				
				var	description:	String{
								return	"\(runsScored)	Runs	Scored	&	\(wicketsTaken)	Wickets	Taken"
				}
				
				func	createDeepCopy()	->	Self	{
								return	deepCopyImplementation()
				}
				
				private	func	deepCopyImplementation	<T>	()	->	T{
								return	Profile(runsScored,	wicketsTaken)	as!	T
				}
}

We	have	a	private	method	called	deepCopyImplementation,	which	is	generic	
and	able	to	figure	out	the	type	correctly.	It	has	a	type	parameter	‘T’,	which	is
actually	going	to	be	inferred	(we	don’t	provide	this	type	parameter	anywhere)
and	a	return	type	of	‘T’.	We	return	a	Profile	object	and	force	cast	it	to	T.

Cricketer	class	now	looks	like	this:

class	Cricketer	:	CustomStringConvertible	,DeepCopy{
				var	name	:	String
				var	profile	:	Profile
				
				init(_	name	:String	,	_	profile	:	Profile)	{
								self.name	=	name
								self.profile	=	profile
				}
				
				var	description:	String{
								return	"\(name)	:	Profile	:	\(profile)"

				}
				
				func	createDeepCopy()	->	Self	{
								return	deepCopyImplementation()
				}
				
				private	func	deepCopyImplementation	<T>	()	->	T{
								return	Cricketer(name,	profile)	as!	T
				}
				
}

Let	us	define	our	main	method	as	below	and	see	the	results:

func	main(){
				let	profile	=	Profile(1200,	123)
				let	bhuvi	=	Cricketer("Bhuvi",	profile)
				let	ishant	=	bhuvi.createDeepCopy()
				ishant.name	=	"Ishant"
				ishant.profile	=	bhuvi.profile.createDeepCopy()
				ishant.profile.wicketsTaken	=	140
				print(bhuvi.description)
				print(ishant.description)
}

main()

Output	in	the	Xcode	console:

Bhuvi	:	Profile	:	1200	Runs	Scored	&	123	Wickets	Taken
Ishant	:	Profile	:	1200	Runs	Scored	&	140	Wickets	Taken

We	can	see	that	bhuvi	and	ishant	are	two	different	objects	now,	and	this	is	how
Deep	Copy	is	implemented.

Summary:

When	you	are	in	a	situation	to	clone	objects	without	coupling	to	their	concrete
classes,	you	can	opt	for	Prototype	design	pattern,	which	also	helps	in	reducing

repetitive	initialisation	code.

9)	Creational	-	Singleton	Design	Pattern
When	discussing	which	patterns	to	drop,	we	found	that	we	still	love	them	all	(Not
really	-	I	am	in	favour	of	dropping	Singleton.	Its	usage	is	almost	always	a	design
smell)	-	Erich	Gamma	(one	of	the	Gang	Four)

A	design	pattern	everyone	loves	to	hate.	Is	it	because	it	is	actually	bad	or	is	it
because	of	its	abuse	by	the	developers?	Let’s	see.

Definition:

Singleton	is	a	creational	design	pattern	that	provides	us	with	one	of	the	best
ways	to	create	an	object.	This	pattern	ensures	a	class	has	only	one	instance	and
provides	a	global	access	to	it	so	that	the	object	can	be	used	by	all	the	other
classes.

Usage:

Let	us	take	the	case	of	an	API	that	returns	some	JSON	response,	which	when
parsed	looks	like	this:

["Sachin"	:	1,	"Sehwag"	:	2	,	"Dravid"	:	3,	"Kohli"	:	4,	"Yuvraj"	:	5	,"Dhoni"	:	6
,"Jadeja"	:	7	,"Ashwin"	:	8,	"Zaheer"	:	9	,"Bhuvi"	:	10,	"Bumrah"	:	11]

This	data	structure	is	an	array	where	each	object	is	a	key-value	pair.	Key
represents	the	name	of	Indian	Cricketer	and	Value	represents	the	position	at
which	the	cricketer	bats.

We	would	need	only	one	instance	of	the	SingletonDatabase	class	in	order	to	save
this	data	to	our	database.	There	is	no	point	in	initialising	database	class	more
than	once,	as	it	would	just	waste	memory.	Our	code	looks	like	this:

import	UIKit
class	SingletonDatabase{
				var	dataSource	=	["Sachin"	:	1,	"Sehwag"	:	2	,	"Dravid"	:	3,	"Kohli"	:	4,
"Yuvraj"	:	5			,"Dhoni"	:	6	,"Jadeja"	:	7	,"Ashwin"	:	8,	"Zaheer"	:	9	,"Bhuvi"	:	10,
"Bumrah"	:	11]

				var	cricketers	=	[String:Int]()

				static	let	instance	=	SingletonDatabase()
				static	var	instanceCount	=	0

				private	init(){
								print("Initialising	the	singleton")
								type(of:	self).instanceCount	+=	1
								for	dataElement	in	dataSource{
													cricketers[dataElement.key]	=	dataElement.value
								}
				}

}

We	first	make	a	private	initialiser	that	does	not	take	any	arguments.	And	that’s
the	simplest	way	to	create	on	object.	As	it	is	private,	no	one	can	make	another
instance	of	the	class.

But	how	do	we	let	someone	access	the	SingletonDatabase?	That’s	where	the
Singleton	pattern	comes	into	play.

We	initialise	a	static	variable	with	the	only	instance	of	SingletonDatabase	class.
Making	it	static	restricts	the	ability	to	create	multiple	instances	of	the	class.	

Now	we	add	the	data	coming	from	the	API	call	to	our	array	of	cricketers.	That’s
it!	We	have	our	database	ready.

Now,	how	does	someone	have	access	to	this	database?	Assume	we	want	to	know
the	position	at	which	a	cricketer	bats.	We	write	a	function	for	that	just	after	the
private	init()	method	in	SingletonDatabase	class.

func	getRunsScoredByCricketer(name:String)	->	Int{
								if	let	position	=	cricketers[name]{
												print("\(name)	bats	at	number	\(position)	for	Indian	Crikcet	Team")
												return	cricketers[name]!
								}

							print("Cricketer	with	name	\(name)	not	found")
							return	0
}

This	method	is	straightforward.	It	takes	the	name	of	the	cricketer	as	an	argument
and	returns	his	position	in	the	line-up.

In	order	for	us	to	access	this	class	at	some	point	in	our	code,	we	write	it	this
way:

func	main(){
				let	singleton	=	SingletonDatabase.instance
				singleton.getRunsScoredByCricketer(name:	"Sachin")
}

Very	simple	and	short.	We	create	a	variable	named	singleton,	which	helps	us	in
accessing	all	the	functions	in	our	SingletonDatabase	class.	

Now	run	the	main()	method.

main()

Output	in	the	Xcode	console:

Initialising	the	singleton
Sachin	bats	at	number	1	for	Indian	Cricket	Team

Change	the	name	parameter	to	“Sach”	and	the	output	is:

Initialising	the	singleton
Cricketer	with	name	Sach	not	found

We	have	not	yet	discussed	the	variable	named	instanceCount	in	our	private	init()

method.	We	can	use	this	variable	to	show	that	there	is	only	one	instance	of	the
SingletonDatabase	class.

Change	the	main	method	this	way:

func	main(){
				let	singleton1	=	SingletonDatabase.instance
				print(SingletonDatabase.instanceCount)
				
				let	singleton2	=	SingletonDatabase.instance
				print(SingletonDatabase.instanceCount)

}

Output	in	the	Xcode	console:

Initialising	the	singleton
1
1

Instance	count	remains	1	even	though	we	initialised	the	class	more	than	once.	

Adding	the	code	snippet	for	another	self-explanatory	example	here,	which	would
enhance	your	understanding:

import	UIKit

class	PlayerRating	:	CustomStringConvertible{
				private	static	var	_nameOfThePlayer	=	""
				private	static	var	_ratingForThePlayer	=	0

				var	nameOfThePlayer	:	String{
								get	{return	type(of:	self)._nameOfThePlayer}
								set(value)	{type(of:	self)._nameOfThePlayer	=	value}
				}

				var	ratingForThePlayer	:	Int{
								get	{return	type(of:	self)._ratingForThePlayer}
								set(value)	{type(of:	self)._ratingForThePlayer	=	value}

				}

				var	description:	String{
								return	"\(nameOfThePlayer)	has	got	a	rating	of	\(ratingForThePlayer)"
				}
}

func	main(){
				let	playerRating1	=	PlayerRating()
				playerRating1.nameOfThePlayer	=	"Dhoni"
				playerRating1.ratingForThePlayer	=	8

				let	playerRating2	=	PlayerRating()
				playerRating2.ratingForThePlayer	=	7

				print(playerRating1)
				print(playerRating2)
}
main()

Output	in	the	Xcode	console:

Dhoni	has	got	a	rating	of	7
Dhoni	has	got	a	rating	of	7

Summary:

We	should	use	Singleton	pattern	only	when	we	have	a	scenario	forcing	us	to	use
a	single	instance	of	an	object	at	multiple	places.

Part	Three:	Structural

10)	Structural	-	Adapter	Design	Pattern
Definition:

Adapter	is	a	structural	design	pattern	that	converts	the	interface	of	a	class	into
another	interface	clients	expect.	This	allows	classes	with	incompatible	interfaces
to	collaborate.

Usage:

Suppose	you	have	a	TestBatsman	class	with	fieldWell()	and	makeRuns()
methods.	And	also	a	T20Batsman	class	with	batAggressively()	method.

Let’s	assume	that	you	are	short	on	T20Batsman	objects	and	you	would	like	to
use	TestBatsman	objects	in	their	place.	TestBatsmen	have	some	similar
functionality	but	implement	a	different	interface	(they	can	bat	but	cannot	bat	in
the	way	needed	for	a	T20	match),	so	we	can’t	use	them	directly.	

We	will	use	the	Adapter	pattern.	Here	our	client	would	be	T20Batsman	and
adaptee	would	be	TestBatsman.	

Let	us	now	write	code:

import	UIKit

protocol	TestBatsman	{
				func	makeRuns()
				func	fieldWell()
}

A	simple	protocol	named	TestBatsman	defining	two	methods,	makeRuns	and

fieldWell.

class	Batsman1	:	TestBatsman{
				func	makeRuns()	{
								print("I	can	bat	well	but	only	at	StrikeRate	of	80")
				}
				
				func	fieldWell()	{
								print("I	can	field	well")
				}
}

We	define	a	Batsman1	class	conforming	to	TestBatsman	protocol.	This	type	of
batsman	can	make	runs	at	a	strike	rate	of	80.

protocol	T20Batsman{
				func	batAggressively()
}

We	have	one	more	protocol	named	T20Batsman,	which	defines	batAggressively
method.

class	Batsman2	:	T20Batsman{
				func	batAggressively()	{
									print("I	need	to	bat	well	at	a	StrikeRate	of	more	than	130")
				}
}

We	define	a	Batsman2	class	conforming	to	T20Batsman	protocol.	This	type	of
batsman	can	make	runs	at	a	strike	rate	of	130.

Now	considering	our	situation,	we	need	to	make	an	adapter	in	such	a	way	that
TestBatsman	can	fit	to	be	a	T20Batsman.

class	TestBatsmanAdapter	:	T20Batsman{
				let	testBatsman	:	TestBatsman
				init	(_	testBatsman	:	TestBatsman){
								self.testBatsman	=	testBatsman
				}

				
				func	batAggressively()	{
								testBatsman.makeRuns()
				}
}

We	write	a	class	named	TestBatsmanAdapter,	whose	superclass	is	T20Batsman.
It	has	a	property	of	type	TestBatsman	and	it	takes	an	object	of	type	TestBatsman
for	its	initialisation.	It	is	this	object	which	we	make	adaptable	to	batAggressively
method	by	calling	makeRuns	method.

Output	in	the	Xcode	console:

Test	Batsman
I	can	field	well
I	can	bat	well	but	only	at	StrikeRate	of	80
T20	Batsman
I	need	to	bat	well	at	a	StrikeRate	of	more	than	130
TestBatsmanAdapter
I	can	bat	well	but	only	at	StrikeRate	of	80

Summary:

When	you	are	in	a	situation	where	you	have	an	object	that	should	be	able	to	do
the	same	task	but	in	lots	of	different	ways,	and	you	do	not	want	to	expose	the
algorithm's	implementation	details	to	other	classes,	opt	for	Adapter	design
pattern.

11)	Structural	-	Bridge	Design	Pattern
Definition:
Bridge	is	a	structural	design	pattern	that	lets	us	connect	components	together
through	abstraction.	It	enables	the	separation	of	implementation	hierarchy	from
interface	hierarchy	and	improves	the	extensibility.
Usage:
Let	us	suppose	that	we	have	a	protocol	named	Batsman,	whose	main	function	is
to	make	runs	for	his	team.

import	Foundation
import	UIKit

protocol	Batsman
{
				func	makeRuns(_	numberOfBalls:	Int)
}

makeRuns	takes	a	parameter	named	numberOfBalls	of	type	Int.	

Let	us	now	define	three	different	classes	of	batsmen	conforming	to	Batsman
protocol.

class	TestBatsman	:	Batsman
{
				func	makeRuns(_	numberOfBalls:	Int)	{
								print("I	am	a	Test	Batsman	and	I	score	\(0.6	*	Double(numberOfBalls))
runs	in	\(numberOfBalls)	balls")
				}
}

class	ODIBatsman	:	Batsman
{
				func	makeRuns(_	numberOfBalls:	Int)	{
								print("I	am	a	ODI	Batsman	and	I	score	\(1	*	Double(numberOfBalls))	runs
in	\(numberOfBalls)	balls")
				}
}

class	T20IBatsman	:	Batsman
{
				func	makeRuns(_	numberOfBalls:	Int)	{
								print("I	am	a	T20	Batsman	and	I	score	\(1.4	*	Double(numberOfBalls))
runs	in	\(numberOfBalls)	balls")
				}
}

We	have	three	types	of	batsmen	with	the	only	difference	between	them	being	the
number	of	runs	they	score	in	a	given	number	of	balls.	Let	us	now	define	a
protocol	Player,	whose	main	function	is	to	play.

protocol	Player
{
				func	play()
}

We	now	define	a	Cricketer	class	conforming	to	Player	protocol.

class	Cricketer	:	Player
{
				var	numberOfBalls:	Int
				var	batsman:	Batsman
				
				init(_	batsman:	Batsman,	_	numberOfBalls:	Int)
				{
								self.batsman	=	batsman
								self.numberOfBalls	=	numberOfBalls
				}
				
				func	play()	{

								batsman.makeRuns(numberOfBalls)
				}
			
}

Cricketer	class	takes	two	parameters	during	its	initialisation,	one	of	type
Batsman	and	the	other	of	type	Int.	This	is	where	we	are	bridging	between
Batsman	class	and	Player	class	by	calling	makeRuns	method	of	batsman	in	the
play	method.

Let	us	now	define	our	main	function	and	see	how	this	design	pattern	works.

func	main()
{
				let	testBatsman	=	TestBatsman()
				let	odiBatsman	=	ODIBatsman()
				let	t20Batsman	=	T20IBatsman()
				
				let	cricketer1	=	Cricketer(testBatsman,	20)
				let	cricketer2	=	Cricketer(odiBatsman,	20)
				let	cricketer3	=	Cricketer(t20Batsman,	20)
				
				cricketer1.play()
				cricketer2.play()
				cricketer3.play()
				
}

main()
Output	in	the	Xcode	console:

I	am	a	Test	Batsman	and	I	score	12.0	runs	in	20	balls
I	am	a	ODI	Batsman	and	I	score	20.0	runs	in	20	balls
I	am	a	T20	Batsman	and	I	score	28.0	runs	in	20	balls

Summary:

When	you	are	in	a	situation	where	you	have	to	change	the	implementation	object
inside	the	abstraction,	and	when	you	need	to	extend	a	class	in	several

independent	dimensions,	Bridge	design	pattern	serves	the	best.

12)	Structural	-	Composite	Design	Pattern
Definition:

Composite	is	a	structural	design	pattern	that	lets	us	compose	objects	into	tree
structures	and	allows	clients	to	work	with	these	structures	as	if	they	were
individual	objects.	Composition	lets	us	make	compound	objects.

Usage:

Assume	we	are	building	a	tree	structure	of	a	cricket	team	where	each	entity
contains	name,	role,	and	grade	of	contract	as	attributes.	Let’s	see	how	we	can	use
Composite	design	pattern	to	build	such	a	system.

import	UIKit
import	Foundation

class	CricketTeamMember	:	CustomStringConvertible{
				
				var	name	:	String
				var	role	:	String
				var	grade	:	String
				var	teamMembers	:	[CricketTeamMember]
				
				init(name:String,	role	:	String,	grade	:	String)	{
								self.name	=	name
								self.role	=	role
								self.grade	=	grade
								self.teamMembers	=	[CricketTeamMember]()
				}
				

				func	addMember(member	:	CricketTeamMember){
								teamMembers.append(member)
				}
				
				func	removeMember(member	:	CricketTeamMember){
								teamMembers.append(member)
				}
				
				func	getListOfTeamMembers()	->	[CricketTeamMember]{
								return	teamMembers
				}
				var	description:	String
				{
								let	demo	=	"\(name)		\(role)	\(grade)"
								return	demo
								
				}
}

Let’s	start	with	defining	a	class	called	CricketTeamMember	conforming	to
CustomStringConvertible.	It	has	four	properties	like	name	of	type	String,	role	of
type	String,	grade	of	type	String,	and	an	array	of	teamMembers	of	type
CricketTeamMember.	It	takes	three	parameters	for	its	initialisation:	name,	role,
and	grade	of	type	String.

We	define	a	function	called	addMember,	which	takes	a	CricketTeamMember
object	as	parameter	and	appends	it	to	the	teamMembers	array.

We	have	a	function	named	removeMember,	which	takes	a	CricketTeamMember
object	as	parameter	and	removes	it	from		teamMembers	array.

We	have	another	function	called	getListOfTeamMembers,	which	returns	list	of
team	members.

Let	us	now	define	main	function	and	see	how	the	Composite	pattern	can	be	used
to	define	a	tree	structure.

func	main(){

//1

				let	headCoach	=	CricketTeamMember(name:	"HeadCoach",	role:
"HeadCoach",	grade:	"A")
				let	captain	=	CricketTeamMember(name:	"TeamCaptain",	role:	"Captain",
grade:	"B")
				let	bowlingCoach	=	CricketTeamMember(name:	"BowlingCoach",	role:
"Coach",	grade:	"B")
				let	battingCoach	=	CricketTeamMember(name:	"BattingCoach",	role:
"Coach",	grade:	"B")
				let	fieldingCoach	=	CricketTeamMember(name:	"FieldingCoach",	role:
"Coach",	grade:	"B")
				let	asstBowlingCoach	=	CricketTeamMember(name:	"ABoC1",	role:
"AsstCoach",	grade:	"C")
				let	asstBattingCoach	=	CricketTeamMember(name:	"ABaC1",	role:
"AsstCoach",	grade:	"C")
				let	asstFieldingCoach	=	CricketTeamMember(name:	"ABfC1",	role:
"AsstCoach",	grade:	"C")
				let	teamMember1	=	CricketTeamMember(name:	"TM1",	role:	"Player",	grade:
"B")
				let	teamMember2	=	CricketTeamMember(name:	"TM2",	role:	"Player",	grade:
"B")
				
		//2

				headCoach.addMember(member:	captain)
				headCoach.addMember(member:	bowlingCoach)
				headCoach.addMember(member:	battingCoach)
				headCoach.addMember(member:	fieldingCoach)
				
				captain.addMember(member:	teamMember1)
				captain.addMember(member:	teamMember2)
				
				bowlingCoach.addMember(member:	asstBowlingCoach)
				battingCoach.addMember(member:	asstBattingCoach)
				fieldingCoach.addMember(member:	asstFieldingCoach)

//3

				print(headCoach.description)
				for	member	in	headCoach.getListOfTeamMembers(){
								print(member.description)
								for	member	in	member.getListOfTeamMembers(){
													print(member.description)
								}
				}
}

main()

Let’s	read	this	method	step-by-step	now.

1.	 1)	 Here	we	define	different	team	members	using	the	instance	of
CricketTeamMember.	We	can	see	different	roles	like	HeadCoach,
TeamCaptain,	BowlingCoach,	etc.

1.	 2)	 We	then	start	forming	trees	by	adding	all	the	captains	and	coaches
under	head	coach,	adding	team	members	under	team	captain,	etc.

1.	 3)	 Here	we	start	printing	the	trees.	Initially	we	print	the	description	of
HeadCoach	and	then	we	loop	through	all	the	team	members	added	under
him	and	print	their	descriptions	too.

Output	in	the	Xcode	console:

HeadCoach		HeadCoach	A
TeamCaptain		Captain	B
TM1		Player	B
TM2		Player	B
BowlingCoach		Coach	B
ABoC1		AsstCoach	C
BattingCoach		Coach	B

ABaC1		AsstCoach	C
FieldingCoach		Coach	B
ABfC1		AsstCoach	C

Summary:

When	you	are	in	a	situation	to	simplify	the	code	at	the	client’s	end	that	has	to
interact	with	a	complex	tree	structure,	then	go	for	Composite	design	pattern.	In
other	words,	it	should	be	used	when	clients	need	to	ignore	the	difference
between	compositions	of	objects	and	individual	objects.

13)	Structural	-	Decorator	Design	Pattern
Definition:

Decorator	is	a	structural	design	pattern	that	lets	us	add	new	behaviour	to	the
objects	without	altering	the	class	itself.	It	helps	us	in	keeping	the	new
functionalities	separate	without	having	to	rewrite	existing	code.

Usage:

Assume	we	are	checking	if	a	player	is	fit	for	playing	T20	game	of	cricket	as	a
bowler	or	batsman	or	both	or	none,	based	on	his	batting	and	bowling	statistics.
Let	us	see	how	Decorator	design	pattern	can	help	us	here.

import	UIKit
import	Foundation

class	T20Batsman{
				
				var	strikeRate	:	Int	=	0
				
				func	makeRuns()	->	String{
								return	(strikeRate	>	130)	?	"Fit	for	T20	Team	as	Batsman"	:	"Too	slow
Batsman	for	T20	Team"
				}
				
}

We	write	a	class	called	T20Batsman	with	a	property	called	strikeRate	of	type	Int.
It	has	a	function	defined	makeRuns,	which	tells	us	if	the	batsman	is	fit	for	T20
team	based	on	his	strikeRate.	If	the	strike	rate	is	more	than	130,	he	is	fit	as	T20

batsman,	otherwise	he	is	too	slow	for	the	game.

class	T20Bowler{
				
				var	economyRate	:	Float	=	0
				
				func	bowlEconomically	()	->	String{
								return	(economyRate	<	8.0)	?	"Fit	for	T20	Team	as	Bowler"	:	"Too
expensive	as	a	Bowler"
				}
				
}

We	then	define	a	class	called	T20Bowler	with	a	property	called	economyRate	of
type	Float.	It	has	a	function	defined	called	bowlEconomically,	which	tells	us	if
the	bowler	is	fit	for	T20	team	based	on	his	economyRate.	If	the	economy	rate	is
less	than	8.0,	he	is	fit	as	T20	bowler,	otherwise	he	is	too	expensive	as	a	bowler
for	the	game.

class	T20AllRounder	:	CustomStringConvertible{
				private	var	_strikeRate	:	Int	=	0
				private	var	_economyRate	:	Float	=	0
				
				private	let	t20Batsman	=	T20Batsman()
				private	let	t20Bowler	=	T20Bowler()
				
				
				func	makeRuns()	->	String{
								return	t20Batsman.makeRuns()
				}
				
				func	bowlEconomically()	->	String{
								return	t20Bowler.bowlEconomically()
				}
				
				var	strikeRate	:	Int{
								get	{return	_strikeRate}
								set(value){
												t20Batsman.strikeRate	=	value

												_strikeRate	=	value
								}
				}
				
				var	economyRate	:	Float{
								get	{return	_economyRate}
								set(value){
												t20Bowler.economyRate	=	value
												_economyRate	=	value
								}
				}
				
				var	description:	String{
								if	t20Batsman.strikeRate	>	130	&&	t20Bowler.economyRate	<	8	{
												return	"Fit	as	T20	AllRounder"
								}
								else{
								var	buffer	=	""
								buffer	+=	t20Batsman.makeRuns()
								buffer	+=	"	&	"	+	t20Bowler.bowlEconomically()
								return	buffer
								}
				}
}

We	now	define	a	class	for	T20AllRounder	conforming	to
CustomStringConvertible.	All	rounder	is	someone	in	cricket	who	can	bat	and
bowl	reasonably	well.	It	has	four	private	variables,	strikeRate	and	economyRate
of	type	Int	and	Float,	along	with	two	more	variables	of	type	T20Batsman	and
T20Bowler.

This	allrounder	should	be	able	to	make	runs	and	bowl	well.	It	has	two	functions
defined:

1.	 1)	 makeRuns:	Here	we	use	the	instance	of	T20Batsman	variable	to	call
the	makeRuns	method	and	see	if	he	is	fit	as	T20Batsman	based	on	defined
criteria	for	strike	rate.

1.	 2)	 bowlEconomically:	Here	we	use	the	instance	of	T20Bowler	variable	to
call	the	bowlEconomically	method	and	see	if	he	is	fit	as	T20Bowler	based
on	defined	criteria	for	economy	rate.

In	the	future,	if	we	want	to	change	the	conditions	for	batsmen	or	bowler	or	both,
we	do	not	have	to	disturb	the	code	written	for	allrounder	class.	Just	changing	the
code	in	T20Batsman	and	T20Bowler	classes	will	be	enough.

Let	us	now	write	a	main	function	to	see	the	code	in	action.

func	main(){
				
				let	t20AllRounder	=	T20AllRounder()
				t20AllRounder.strikeRate	=	120
				t20AllRounder.economyRate	=	7
				print(t20AllRounder.description)

}

main()

We	take	an	instance	of	T20AllRounder	class	and	feed	in	the	strikeRate	and
economyRate	and	see	if	a	certain	player	is	fit	or	not.

Output	in	the	Xcode	console:

Too	slow	Batsman	for	T20	Team	&	Fit	for	T20	Team	as	Bowler

Keep	changing	the	inputs	for	strikeRate	and	economyRate	and	see	if	the	player
is	fit	for	T20	game	of	cricket.

t20AllRounder.strikeRate	=	150
t20AllRounder.economyRate	=	7

Prints:	Fit	as	T20	AllRounder

t20AllRounder.strikeRate	=	150
t20AllRounder.economyRate	=	9

Prints:	Fit	for	T20	Team	as	Batsman	&	Too	expensive	as	a	Bowler

t20AllRounder.strikeRate	=	120
t20AllRounder.economyRate	=	9

Prints:	Too	slow	Batsman	for	T20	Team	&	Too	expensive	as	a	Bowler

Summary:

If	you	are	in	a	situation	where	you	are	looking	for	something	more	flexible	than
class	inheritance	and	need	to	edit/update	behaviours	at	runtime,	then	Decorator
design	pattern	serves	you	better.

14)	Structural	-	Facade	Design	Pattern
Definition:

Facade	is	a	structural	design	pattern	that	lets	us	expose	several	patterns	through	a
single,	easy-to-use	interface.	Facade	defines	a	higher-level	interface	that	makes
the	subsystem	easier	to	use	by	wrapping	a	complicated	subsystem	with	a	simpler
interface.

Usage:

Assume	we	are	building	an	imaginary	player	auction	system	for	a	private	cricket
league.	Any	team	with	an	id	and	a	name	can	buy	players	who	have	an	id,	role	in
the	team,	and	a	price.	Let’s	write	some	code	for	this:

import	UIKit
import	Foundation

//Team	represents	an	object	that	can	buy	a	player
public	struct	Team	{
				
				public	let	teamId:	String
				public	var	teamName:	String
}

public	struct	Player	{
				public	let	playerId:	String
				public	var	primaryRole:	String
				public	var	price:	Double
}

We	define	Team	struct	that	holds	the	properties	of	teamId	and	teamName	as
String.	Then	there	is	another	struct	for	Player	that	holds	playerId,	primaryRole	as
String	and	price	as	Double.

//Any	Swift	type	that	conforms	the	Hashable	protocol	must	also	conform	the
Equatable	protocol.	Because	Hashable	protocol	is	inherited	from	Equatable
protocol.

extension	Team:	Hashable	{
				
				public	var	hashValue	:	Int{
								return	teamId.hashValue
				}

				public	static	func	==	(lhs	:	Team,	rhs	:	Team)	->	Bool{
								return	lhs.teamId	==	rhs.teamId
				}

}

extension	Player	:	Hashable{
				
				public	var	hashValue	:	Int{
								return	playerId.hashValue
				}
				
				public	static	func	==(lhs:Player,	rhs:Player)	->Bool{
								return	lhs.playerId	==	rhs.playerId
				}
}

We	write	a	couple	of	extensions,	one	for	Team	and	one	for	Player,	each
conforming	to	Hashable	protocol.	When	we	conform	to	a	hashable	protocol,	we
must	have	a	hashValue	property.

Hashable	is	a	type	that	has	hashValue	in	the	form	of	an	integer	that	can	be
compared	across	different	types.	We	get	the	hashValue	as	teamId.hashValue.		

Apple	definesEquatable	as	a	type	that	can	be	compared	for	value	equality,	which

is	part	of	the	working	definition	for	a	hashable	protocol.

We	then	use	mandatory	method	related	to	Hashable	protocol	that	compares	the
type	and	checks	to	see	if	they	are	equal.

public	class	AvailablePlayersList{
				public	var	availablePlayers	:	[Player	:	Int]	=	[:]
				
				public	init(availablePlayers	:	[Player:Int]){
								self.availablePlayers	=	availablePlayers
				}
				
}

public	class	SoldPlayersList{
				public	var	soldPlayers	:	[Team:[Player]]	=	[:]
}

We	define	a	class	called	AvailablePlayersList.	It	has	a	variable	named
availablePlayers	of	type	Dictionary.	

Then	we	have	another	class	called	SoldPlayerList,	which	has	a	variable	named
soldPlayers	that	basically	maintains	a	list	of	players	bought	by	a	certain	team.

Now	we	define	our	facade	with	the	help	of	the	classes	defined	above!

public	class	AuctionFacade{
				
				public	let	availablePlayersList	:	AvailablePlayersList
				public	let	soldPlayersList	:	SoldPlayersList
				
				public	init(availablePlayersList:AvailablePlayersList,
soldPlayersList:SoldPlayersList){
								self.availablePlayersList	=	availablePlayersList
								self.soldPlayersList	=	soldPlayersList
				}
				
				public	func	buyAPlayer(for	player:	Player,
																											by	team:	Team)	{

								
								print("Ready	to	buy	\(player.primaryRole)	with	id	'\(player.playerId)'	-	'\
(team.teamName)'")
								
								let	count	=	availablePlayersList.availablePlayers[player,	default:	0]
								guard	count	>	0	else	{
												print("'\(player.primaryRole)'	is	sold	out")
												return
								}
					
								availablePlayersList.availablePlayers[player]	=	count	-	1
	
								var	soldOuts	=
												soldPlayersList.soldPlayers[team,	default:	[]]
								soldOuts.append(player)
								soldPlayersList.soldPlayers[team]	=	soldOuts
								
								print("\(player.primaryRole)	with	\(player.playerId)	"	+	"bought	by	'\
(team.teamName)'")
				}
				
}

AuctionFacade	takes	two	parameters	during	its	initialisation,	one	of	type
AvailablePlayersList	and	one	of	type	SoldPlayerList.	We	then	define	a	public
method	buyAplayer.

When	a	player	is	bought,	the	count	for	that	type	of	player	is	reduced	by	one	in
availablePlayerList.	The	same	player	is	appended	to	the	list	of	soldPlayersList.

Let’s	now	write	a	main	function	to	see	our	facade	in	action.

func	main(){
				let	bowler1	=	Player(playerId:	"12345",	primaryRole:	"Bowler",	price:	123)
				let	batsman1	=	Player(playerId:	"12365",	primaryRole:	"Batsman",	price:	152)
				
				let	availablePlayerList	=	AvailablePlayersList(availablePlayers:	[bowler1	:	3,
batsman1:45])
				let	auctionFacade	=	AuctionFacade(availablePlayersList:	availablePlayerList,

soldPlayersList:	SoldPlayersList())
				let	team1	=	Team(teamId:	"XYZ-123",	teamName:	"Sydney")
				auctionFacade.buyAPlayer(for:	bowler1,	by:	team1)
}

main()

We	define	bowler1	and	batsman1	as	Player	type	objects.	We	then	initialise
AvailablePlayerList	with	3	bowler1	type	Players	and	45	batsman1	type	Players.

We	then	take	an	instance	of	AuctionFacade	and	provide	availablePlayerList	and
instance	of	SoldPlayerList	as	parameters.

Output	in	the	Xcode	console:

Ready	to	buy	Bowler	with	id	'12345'	-	'Sydney'
Bowler	with	12345	bought	by	'Sydney'

Summary:

When	you	want	to	provide	a	simple	interface	to	a	complex	subsystem	and	have	a
single	interface	for	traversing	different	data	structures,	Facade	design	patterns
works	the	best.

15)	Structural	-	FlyWeight	Design	Pattern
Definition:

FlyWeight	is	a	structural	design	pattern	that	helps	in	avoiding	redundancy	while
storing	data.	It	helps	fit	more	objects	in	the	available	amount	of	RAM	by	reusing
already	existing	similar	kinds	of	objects	by	storing	them	and	creating	a	new
object	when	no	matching	object	is	found.

Assume	you	are	storing	first	and	last	names	in	memory.	When	there	are	many
people	with	identical	first	and	last	names,	there	is	no	point	in	storing	them	again
and	again	as	a	new	entity.	Instead	we	use	something	like	FlyWeight	design
pattern	to	save	the	storage	space.

Usage:

Let	us	consider	a	situation	where	we	are	storing	player	profiles	where	each	entity
consists	of	player’s	name	of	type	String	and	the	teams	he	played	for	of	type
String	array	as	attributes.	

We	write	the	code	without	using	FlyWeight	design	pattern	and	check	the
memory	occupied.

import	UIKit
import	Foundation

class	PlayerProfile{
				var	fullName	:	String
				var	teamsPlayedFor	:	[String]
				
				init(_	fullName	:	String,	_	teamsPlayedFor	:	[String])	{

								self.fullName	=	fullName
								self.teamsPlayedFor	=	teamsPlayedFor
				}
				
				var	charCount:	Int
				{
								var	count	=	0
								for	team	in	teamsPlayedFor{
												count	+=	team.utf8.count
								}
								count	+=	fullName.utf8.count
								return	count
				}
}

We	define	a	class	called	PlayerProfile,	which	takes	fullName	of	type	String	and
teamsPlayedFor	of	type	String	array	as	parameters	during	its	initialisation.

We	then	define	a	variable	called	charCount,	which	is	an	indicator	of	the	memory
occupied.	Let	us	write	our	main	function	and	check	the	character	count.

func	main()
{
				let	dhoni	=	PlayerProfile("Mahendra	Dhoni",["India	,Chennai"])
				let	kohli	=	PlayerProfile("Virat	Kohli",["India	,	Bangalore"])
				let	yuvi	=	PlayerProfile("Yuvraj	Singh",["India	,	Punjab"])
				print("Total	number	of	chars	used:"		,dhoni.charCount	+	kohli.charCount	+
yuvi.charCount)
				
}

main()

We	define	a	few	instances	of	PlayerProfile	by	passing	the	players’	names	and
their	teams	as	parameters.	Then	we	use	the	charCount	property	on	all	the
instances	and	print	it	to	the	console.

Output	in	the	Xcode	console:

Total	number	of	chars	used:	82

Let	us	now	use	FlyWeight	design	pattern	for	the	same	use	case.

class	PlayerProfileOptimised{
				static	var	stringsArray	=	[String]()
				private	var	genericNames	=	[Int]()
				
				init(_	fullName:	String,	_	teamsPlayedFor	:	[String])
				{
								func	getOrAdd(_	s:	String)	->	Int
								{
												if	let	idx	=	type(of:	self).stringsArray.index(of:	s)
												{
																return	idx
												}
												else
												{
																type(of:	self).stringsArray.append(s)
																return	type(of:	self).stringsArray.count	-	1
												}
								}
								genericNames	=	fullName.components(separatedBy:	"	").map	{
getOrAdd($0)	}
								for	team	in	teamsPlayedFor{
												genericNames	=	team.components(separatedBy:	"	").map	{getOrAdd($0)
}
								}
				}
				
				static	var	charCount:	Int
				{
								return	stringsArray.map{	$0.utf8.count	}.reduce(0,	+)
				}
}

We	define	a	class	called	PlayerProfileOptimised.	Here	we	define	a	static	variable
called	stringsArray,	which	stores	different	strings	that	may	or	may	not	be
repeated.	We	then	define	a	non-static	variable	called	genericNames,	which	is

going	to	keep	an	array	of	indices.

In	initialisation	method,	we	have	an	inner	function	called	getOrAdd,	which	takes
a	string	as	a	parameter	and	returns	the	index	of	the	string	in	stringsArray	if
already	existing,	or	returns	the	index	by	adding	it	to	the	stringsArray	array	at	the
tail	end.

We	then	initialise	the	genericNames	array	by	taking	the	full	name,	splitting	it
into	a	component	separated	by	space,	and	mapping	it	by	calling	the	function
getOrAdd	with	a	parameter.	This	lets	us	get	genericNames	to	be	initialised	to	a
set	of	indices	that	correspond	to	the	strings	inside	the	stringsArray	array.

Let	us	now	write	a	main	function	and	check	the	character	count:

func	main()
{
				let	dhoni1	=	PlayerProfileOptimised("Mahendra	Dhoni",["India	,Chennai"])
				let	kohli1	=	PlayerProfileOptimised("Virat	Kohli",["India	,	Bangalore"])
				let	yuvi1	=	PlayerProfileOptimised("Yuvraj	Singh",["India	,	Punjab"])
				print("Total	number	of	chars	used:"		,PlayerProfileOptimised.charCount)
}

main()

Output	in	the	Xcode	console:

Total	number	of	chars	used:	63

For	the	same	data,	the	number	of	characters	reduced	significantly.	That’s	how
FlyWeight	design	pattern	can	be	used	for	efficient	storage	of	data.

Summary:

When	you	are	in	a	situation	to	store	data	that	might	contain	a	significant	amount
of	duplicate	data,	you	can	use	FlyWeight	design	pattern.	This	helps	in	reducing
the	usage	of	available	RAM.

16)	Structural	-	Proxy	Design	Pattern
Definition:

Talking	real	world	terms,	your	debit	card	is	a	proxy	of	your	bank	account.	It’s
not	real	money,	it	but	can	be	substituted	for	money	when	you	want	to	buy
something.

Proxy	is	a	structural	design	pattern	that	uses	wrapper	classes	to	create	a	stand-in
for	a	real	resource.	It	is	also	called	surrogate,	handle,	and	wrapper.	Proxy	is	used
to	cover	the	main	object’s	complex	logic	from	the	client	using	it.

Usage:

Assume	we	are	designing	a	small	software	to	filter	applicants	for	the	position	of
head	coach	of	a	cricket	team.	The	client	only	passes	the	number	of	years	of	the
applicant’s	experience,	and	we	need	to	write	a	logic	to	say	if	the	applicant	is	fit
for	the	role	or	not,	without	disturbing	the	client.

Let	us	see	how	we	can	use	Proxy	design	pattern	here:

import	UIKit
import	Foundation

protocol	Coach
{
				func	mentorTheTeam()
}

class	CricketCoach	:	Coach
{

				
				func	mentorTheTeam()	{
								print("Mentoring	the	Cricket	Team")
				}
			
}

We	define	a	protocol	called	Coach,	whose	main	job	is	to	mentor	the	team.
Then	we	define	a	class	called	CricketCoach	conforming	to	Coach	protocol.	

class	CoachApplicant
{
				var	numberOfYearsOfExperience:	Int
				
				init(numberOfYearsOfExperience:	Int)
				{
								self.numberOfYearsOfExperience	=	numberOfYearsOfExperience
				}
}

We	write	a	class	called	CoachApplicant,	which	takes
numberOfYearsOfExperience	of	type	Int	as	parameter	during	its	initialisation.

Now	we	write	a	proxy	conforming	to	Coach	protocol	to	define	the	logic	in	order
to	filter	applicants.

class	CricketCoachProxy	:	Coach
{
				private	let	cricketCoach	=	CricketCoach()
				private	let	coachApplicant:	CoachApplicant
				
				init(coachApplicant:	CoachApplicant)
				{
								self.coachApplicant	=	coachApplicant
				}
				
				func	mentorTheTeam()	{
								if	coachApplicant.numberOfYearsOfExperience	>=	8{
												cricketCoach.mentorTheTeam()

								}	else{
												print("Not	enough	experience	to	coach	the	team")
								}
				}
			
}

It	has	two	private	variables,	one	of	type	CricketCoach	and	one	of	type
CoachApplicant.	In	mentorTheTeam	method,	we	define	the	logic.	If	the
experience	of	the	coach	applicant	is	more	than	8	years,	he	is	through,	otherwise
he	is	rejected.

Let	us	now	write	our	main	method:

func	main()
{
				let	coach	:	Coach	=	CricketCoachProxy(coachApplicant:
CoachApplicant(numberOfYearsOfExperience:	8))
				coach.mentorTheTeam()
}

main()

Output	in	the	Xcode	console:

Mentoring	the	Cricket	Team

Keep	changing	the	experience	parameter	and	check	the	output.

func	main()
{
				let	coach	:	Coach	=	CricketCoachProxy(coachApplicant:
CoachApplicant(numberOfYearsOfExperience:	5))
				coach.mentorTheTeam()
}

main()

Output	in	the	Xcode	console:

Not	enough	experience	to	coach	the	team

In	the	future,	if	we	want	to	change	the	criteria	from	8	years	to	10	years	or	6
years,	we	do	not	have	to	change	any	code	at	the	client’s	end.	We	can	just	change
the	logic	in	the	proxy	and	things	will	work	just	fine.

Summary:

When	you	want	to	create	a	wrapper	around	a	main	object	to	hide	its	complexity
from	the	client,	Proxy	design	pattern	suits	the	best.	It	also	helps	in	delaying	the
object’s	initialisation	so	that	you	can	load	the	objects	only	when	it	is	needed.

Part	Four:	Behavioural

17)	Behavioural	-	Chain	of	Responsibility	Design
Pattern

Definition:

Chain	of	Responsibility	is	a	behavioural	design	pattern	that	allows	us	to	avoid
coupling	the	sender	of	a	request	to	its	receiver	by	giving	multiple	objects	a
chance	to	handle	the	request.	

Usage:

Assume	we	are	building	a	small	cricket	video	game	where	we	choose	the	player
characters	with	their	default	skills.	But	then	we	also	give	provision	to	add	skill
boosters	to	the	player	characters	as	gamers	gain	some	credits.	Let	us	see	how	we
can	use	Chain	of	Responsibility	to	design	such	a	system.

import	Foundation

class	Cricketer	:	CustomStringConvertible{
				var	name	:	String
				var	battingSkillRating	:	Int
				var	bowlingSkillRating	:	Int
				var	fieldingSkillRating	:	Int
				
				init(_	name:String,	_	battingSkillRating:Int,	_	bowlingSkillRating:Int,	_
fieldingSkillRating:Int)	{
								self.name	=	name
								self.battingSkillRating	=	battingSkillRating
								self.bowlingSkillRating		=		bowlingSkillRating
								self.fieldingSkillRating	=	fieldingSkillRating
				}

				
				var	description:	String{
								return	"Cricketer	:	\(name)	with	battingRating	:	\(battingSkillRating),
bowlingRating	:	\(bowlingSkillRating),	fieldingRating	:	\(fieldingSkillRating)"
				}
}

We	define	a	class	called	Cricketer	conforming	to	CustomStringConvertible.
During	its	initialisation	it	takes	parameters	of	name	of	type	String,
battingSkillRating	of	type	Int,	bowlingSkillRating	of	type	Int,	and
fieldingSkillRating	of	type	Int.

class	SkillBooster{
				let	cricketer	:	Cricketer
				var	skillBooster	:	SkillBooster?
				
				init(_	cricketer	:	Cricketer)	{
								self.cricketer	=	cricketer
				}
				
				func	addBooster(_	booster	:	SkillBooster){
								if	skillBooster	!=	nil{
												skillBooster!.addBooster(booster)
								}	else{
												skillBooster	=	booster
								}
				}
				
				func	playTheGame(){
								skillBooster?.playTheGame()
				}
}

We	then	define	a	class	called	SkillBooster,	which	is	meant	to	be	a	base	class	for
different	types	of	boosters.	It	takes	a	parameter	of	type	Cricketer	during	its
initialisation.	We	also	define	an	optional	private	variable	of	type	SkillBooster.
It	has	two	methods	defined,	addBooster	and	playTheGame.	addBooster	takes	a
parameter	of	type	SkillBooster	and	adds	it	to	existing	boosters	after	nil	check.
Otherwise,	skillBooster	is	assigned	the	value	of	incoming	booster.

class	BattingSkillBooster	:	SkillBooster{
				override	func	playTheGame()	{
								print("Adding	Hook	Shot	to	\(cricketer.name)	's	Batting")
								cricketer.battingSkillRating	+=	1
								super.playTheGame()
				}
}

class	BowlingSkillBooster	:	SkillBooster{
				override	func	playTheGame()	{
								print("Adding	Reverse	Swing	to	\(cricketer.name)	's	Bowling")
								cricketer.bowlingSkillRating	+=	1
								super.playTheGame()
				}
}

class	FieldingSkillBooster	:	SkillBooster{
				override	func	playTheGame()	{
								print("Adding	Dive	Catches	to	\(cricketer.name)	's	Fielding")
								cricketer.fieldingSkillRating	+=	1
								super.playTheGame()
				}
}

We	define	different	types	of	skill	boosters	with	SkillBooster	as	the	base	class.	In
all	the	boosters,	we	override	the	function	playTheGame	and	improve	the
corresponding	skill	rating	of	the	player	character	by	1.

class	NoSkillBooster	:	SkillBooster{
				override	func	playTheGame()	{
								print("No	boosters	available	here")
								//don't	call	super
				}
}

We	also	define	a	dummy	skill	booster	just	to	make	the	game	more	interesting.

Let	us	now	write	a	main	function	to	see	the	code	in	action.

func	main(){
				
				let	dhoni	=	Cricketer("Dhoni",	6,	3,	7)
				print(dhoni)
}

main()

Output	in	the	Xcode	console:

Cricketer	:	Dhoni	with	battingRating	:	6,	bowlingRating	:	3,	fieldingRating	:
7

Now	change	the	main	method	to	the	following:

func	main(){
				
				let	dhoni	=	Cricketer("Dhoni",	6,	3,	7)
				print(dhoni)
				
				let	skillBooster	=	SkillBooster(dhoni)
				
				print("Adding	Batting	Booster	to	Dhoni")
				skillBooster.addBooster(BattingSkillBooster(dhoni))
				skillBooster.playTheGame()
				print(dhoni.description)
				
}

main()

Output	in	the	Xcode	console:

Cricketer	:	Dhoni	with	battingRating	:	6,	bowlingRating	:	3,	fieldingRating	:
7
Adding	Batting	Booster	to	Dhoni
Adding	Hook	Shot	to	Dhoni	's	Batting
Cricketer	:	Dhoni	with	battingRating	:	7,	bowlingRating	:	3,	fieldingRating	:
7

We	add	BattingSkillBooster	to	object	dhoni	of	type	Cricketer.	We	can	check	the
output	in	the	console	for	an	improved	rating	on	dhoni’s	batting	skills.

Change	the	main	method	to	the	following	and	observe	the	console:

func	main(){
				
				let	dhoni	=	Cricketer("Dhoni",	6,	3,	7)
				
				let	skillBooster	=	SkillBooster(dhoni)
				
				print("Adding	Batting	Booster	to	Dhoni")
				skillBooster.addBooster(BattingSkillBooster(dhoni))
				
				print("Adding	Bowling	Booster	to	Dhoni")
				skillBooster.addBooster(BowlingSkillBooster(dhoni))
				skillBooster.playTheGame()
				print(dhoni.description)
}

main()

Output	in	the	Xcode	console:

Adding	Batting	Booster	to	Dhoni
Adding	Bowling	Booster	to	Dhoni
Adding	Hook	Shot	to	Dhoni	's	Batting
Adding	Reverse	Swing	to	Dhoni	's	Bowling
Cricketer	:	Dhoni	with	battingRating	:	7,	bowlingRating	:	4,	fieldingRating	:
7

Summary:

Use	the	Chain	of	Responsibility	pattern	when	you	can	conceptualize	your
program	as	a	chain	made	up	of	links,	where	each	link	can	either	handle	a	request
or	pass	it	up	the	chain.	It	can	modify	an	existing	behaviour	by	overriding	an
existing	method	using	inheritance.

18)	Behavioural	-	Strategy	Design	Pattern
Definition:

Strategy	is	a	behavioural	design	pattern	that	lets	you	define	a	set	of	encapsulated
algorithms	and	enables	selecting	one	of	them	at	runtime.	An	important	point	to
observe	is	that	these	algorithm	implementations	are	interchangeable.	In	other
words,	strategy	lets	the	algorithm	vary	independently	from	the	clients	that	use	it.

Usage:

Consider	an	example	of	a	Bowling	Machine	that	releases	balls	of	different
colours	based	on	the	input	of	speed	specified	by	the	user.	Assume	we	have	three
different	speeds:	slow,	medium,	and	fast,	which	corresponds	to	yellow,	green,
and	red	coloured	balls	respectively.	

import	UIKit

enum	CricketBall	:	String{
				case	slow	=	"Yellow"
				case	medium	=	"Green"
				case	fast	=	"Red"
}

We	now	define	a	protocol	ReleaseCricketBallStrategy,	which	has	properties	of
speed	and	the	type	of	cricket	ball,	and	which	also	defines	a	method	to	release	the
ball.

protocol	ReleaseCricketBallStrategy{
				var	speed	:	String	{get	set}
				var	cricketBall	:	CricketBall	{get	set}

				func	releaseBall()	->	String
}

We	now	define	three	new	classes,	one	each	for	fast,	medium,	and	slow	ball
strategies.

Each	of	the	classes	conform	to	ReleaseCricketBallStrategy	protocol.
For	the	sake	of	simplicity,	we	define	speed	as	a	string	which	can	be	Fast,
Medium,	or	Slow.	Each	of	the	classes	has	an	initialiser	that	does	not	take	any
extra	arguments.

releaseBall	method	returns	a	string	implying	that	its	implementation	releases	a
ball	with	specified	properties.

class	FastBallStrategy	:	ReleaseCricketBallStrategy{

				var	speed	=	"Fast"
				var	cricketBall	=	CricketBall.fast
				init(){}

				func	releaseBall()	->	String	{
								return	"Released	\(speed)	ball	with	colour	\(cricketBall.rawValue)"
				}
}

class	MediumBallStrategy	:	ReleaseCricketBallStrategy{
				var	speed	=	"Medium"
				var	cricketBall	=	CricketBall.medium
				init(){}

				func	releaseBall()	->	String	{
								return	"Released	\(speed)	ball	with	colour	\(cricketBall.rawValue)"
				}
}

class	SlowBallStrategy	:	ReleaseCricketBallStrategy{
				var	speed	=	"Slow"
				var	cricketBall	=	CricketBall.slow
				init(){}

				func	releaseBall()	->	String	{
								return	"Released	\(speed)	ball	with	colour	\(cricketBall.rawValue)"
				}
}

Now,	we	define	a	BowlingMachine	class,	which	can	be	initialised	at	runtime	by
passing	an	argument	of	the	type	of	strategy.	We	make	it	conform	to
CustomStringConvertible.

class	BowlingMachine	:	CustomStringConvertible	{
				private	var	releaseCricketBallStrategy	:	ReleaseCricketBallStrategy
				private	var	returnString	=	""
				init(whatStrategy	:	ReleaseCricketBallStrategy){
								self.releaseCricketBallStrategy	=	whatStrategy
								returnString	=	releaseCricketBallStrategy.releaseBall()
				}
				var	description:	String{
								return	returnString
				}
}

It’s	now	time	to	play	with	our	bowling	machine.	We	define	a	method	named
main,	where	we	initialise	BowlingMachine	class	with	different	types	of
strategies.	

func	main(){
				var	bowlingMachine	=	BowlingMachine(whatStrategy:	FastBallStrategy())
				print(bowlingMachine.description)

				bowlingMachine	=	BowlingMachine(whatStrategy:	SlowBallStrategy())
				print(bowlingMachine.description)

				bowlingMachine	=	BowlingMachine(whatStrategy:	MediumBallStrategy())
				print(bowlingMachine.description)

}

Now,	run	the	main()	method.

main()

Output	in	the	Xcode	console:

Released	Fast	ball	with	colour	Red
Released	Slow	ball	with	colour	Yellow
Released	Medium	ball	with	colour	Green

Summary:

Strategy	pattern	allows	us	to	define	a	set	of	related	algorithms	and	allows	the
client	to	choose	any	of	the	algorithms	at	runtime.	It	allows	us	to	add	a	new
algorithm	without	modifying	existing	algorithms.

19)	Behavioural	-	Command	Design	Pattern:

Definition:

The	definition	of	Command	provided	in	the	original	Gang	of	Four	book	on
Design	Patterns	states:	

Encapsulate	a	request	as	an	object,	thereby	letting	you	parameterize	clients
with	different	requests,	queue	or	log	requests,	and	support	undoable
operations.

Command	is	a	behavioural	design	pattern	that	decouples	the	object	invoking	the
operation	from	the	object	that	knows	how	to	perform	it.	It	allows	us	to	turn
requests	into	stand-alone	objects	by	providing	request	objects	with	all	the
necessary	information	for	the	action	to	be	taken.
Usage:
Let	us	consider	a	decision	review	system	in	a	cricket	match	where	the	on-field
umpire	is	not	sure	if	a	batsman	is	out	or	not.	This	umpire	then	asks	the	TV
umpire	to	check	TV	replays	and	make	a	decision.	The	TV	umpire	then
commands	the	TV	operator	to	show	OUT/NOT	OUT	on	the	screen,	depending
upon	the	decision	made.	
Let’s	see	how	we	can	design	such	a	system	with	the	help	of	Command	design
pattern.
import	UIKit

import	Foundation

protocol	Command{
				func	execute()
}

We	define	a	protocol	named	Command	with	a	function	named	execute.
class	ScreenDisplay{
				private	var	showOutOnDisplay	=	false
				
				func	isBatsmanOut(){
								showOutOnDisplay	=	true
								print("Batsman	is	OUT")
				}
				
				func	isBatsmanNotOut(){
								showOutOnDisplay	=	false
								print("Batsman	is	NOTOUT")
				}

}

We	then	define	a	class	called	ScreenDisplay,	which	is	used	to	display	the
decision	made	by	the	TV	umpire.	It	has	a	private	variable	named
showOutOnDisplay,	which	is	initialised	to	false.	
It	has	two	methods	defined.	Based	on	the	bool	property,	these	methods	show
batsman	OUT/NOT	OUT	on	the	screen.
class	BatsmanOutCommand	:	Command{
				var	screenDisplay	:	ScreenDisplay
				
				init(_	screenDisplay	:	ScreenDisplay){
								self.screenDisplay	=	screenDisplay
				}
				
				func	execute()	{
								screenDisplay.isBatsmanOut()
				}
}

class	BatsmanNotOutCommand	:	Command{
				var	screenDisplay	:	ScreenDisplay
				
				init(_	screenDisplay	:	ScreenDisplay){
								self.screenDisplay	=	screenDisplay
				}
				
				func	execute()	{
								screenDisplay.isBatsmanNotOut()
				}
}

We	then	write	two	classes,	BatsmanOutCommand	and
BatsmanNotOutCommand,	conforming	to	Command	protocol.	Both	these
classes	take	a	parameter	of	type	ScreenDisplay	during	their	initialisation.	Then
we	write	the	definition	of	execute	method	by	calling
isBatsmanOut/isBatsmanNotOut	on	ScreenDisplay	object.

class	DisplaySwitch	{
				var	command	:	Command
				
				init(_	command	:	Command)	{
								self.command	=	command
				}
				
				func	pressSwitch(){
								command.execute()
				}
}

Finally,	we	write	a	class	called	DisplaySwitch,	which	takes	an	object	of	type
Command	for	its	initialisation.	We	define	a	method	called	pressSwitch,	which
implements	the	execute	method	on	Command	object.
Let	us	write	our	main	method	and	see	our	code	in	action.
func	main(){
				let	screenDisplay	=	ScreenDisplay()
				
				let	outCommand	=	BatsmanOutCommand(screenDisplay)
				let	notOutCommand	=	BatsmanNotOutCommand(screenDisplay)

				
				let	displaySwitchForOut	=	DisplaySwitch(outCommand)
				displaySwitchForOut.pressSwitch()
				
				let	displaySwitchForNotOut	=	DisplaySwitch(notOutCommand)
				displaySwitchForNotOut.pressSwitch()
				
}

main()

We	take	an	instance	of	ScreenDisplay	and	pass	it	to	BatsmanOutCommand	and
BatsmanNotOutCommand	for	their	initialisations.	

Then,	based	on	the	decision	made	by	the	TV	umpire,	we	initialise	DisplaySwitch
using	outCommand/notOutCommand	as	the	parameters.	

Output	in	the	Xcode	console:

Batsman	is	OUT
Batsman	is	NOTOUT

Summary:

When	you	want	to	encapsulate	the	logical	details	of	an	operation	in	a	separate
entity	and	define	specific	instructions	for	applying	the	command,	Command
design	pattern	serves	you	the	best.	It	also	helps	in	creating	composite	commands.

20)	Behavioural	-	Iterator	Design	Pattern
Definition:

Iteration	in	coding	is	a	core	functionality	of	various	data	structures.	An	iterator
facilitates	the	traversal	of	a	data	structure.	Iterator	is	a	behavioural	design	pattern
that	is	used	to	sequentially	access	the	elements	of	an	aggregate	object	without
exposing	its	underlying	implementation.

Usage:

Assume	we	are	making	a	list	of	top	cricketers	in	a	current	lot,	which	includes
their	name	and	team	name.	We	will	now	see	how	to	use	an	iterator	to	traverse
through	the	list	and	print	the	profile	of	each	cricketer.

Let	us	write	some	code	now:

import	Foundation
struct	Cricketer{
				let	name	:	String
				let	team	:	String
}

We	define	a	struct	named	Cricketer,	which	stores	name	and	team	as	String
properties.

struct	Cricketers{
				let	cricketers	:	[Cricketer]
}

We	define	another	struct	named	Cricketers,	which	stores	cricketers	array	of

custom	type	Cricketer.

struct	CricketersIterator	:	IteratorProtocol{
				
				private	var	current	=	0
				private	let	cricketers	:	[Cricketer]
				
				init(_	cricketers	:	[Cricketer])	{
								self.cricketers	=	cricketers
				}
				
				mutating	func	next()	->	Cricketer?	{
								defer	{
												current	+=	1
								}
								if	cricketers.count	>	current{
												return	cricketers[current]
								}	else{
												return	nil
								}
				}
				
}

extension	Cricketers	:	Sequence{
				func	makeIterator()	->	CricketersIterator	{
								return	CricketersIterator(cricketers)
				}
}

This	is	where	the	magic	happens.	We	define	a	struct	named	CricketersIterator
conforming	to	IteratorProtocol.	Then	we	write	an	extension	for	Cricketers	that
conforms	to	Sequence	protocol.

Apple	says,

“The	IteratorProtocol	protocol	is	tightly	linked	with	the	Sequence	protocol.
Sequences	provide	access	to	their	elements	by	creating	an	iterator,	which	keeps
track	of	its	iteration	process	and	returns	one	element	at	a	time	as	it	advances

through	the	sequence.
Whenever	you	use	a	for-in	loop	with	an	array,	set,	or	any	other	collection	or
sequence,	you’re	using	that	type’s	iterator.	Swift	uses	a	sequence’s	or
collection’s	iterator	internally	to	enable	the	for-in	loop	language	construct.
Using	a	sequence’s	iterator	directly	gives	you	access	to	the	same	elements	in	the
same	order	as	iterating	over	that	sequence	using	a	for-in	loop.”

Back	to	our	code,	we	defined	two	private	properties,	current	of	type	Int	(with
default	value	of	0)	and	an	array	cricketers	of	type	Cricketer.	

We	define	a	method	next	that	returns	an	object	of	type	Cricketer	(notice	the
optional	-	we	may	not	have	any	element	left	in	the	array	after	we	reach	the	last
element).

Let	us	now	write	our	main	method:

func	main(){
				let	cricketers	=	Cricketers(cricketers:	[Cricketer(name:	"Kohli",	team:
"India"),	Cricketer(name:	"Steve",	team:	"Australia"),	Cricketer(name:	"Kane",
team:	"Kiwis"),	Cricketer(name:	"Root",	team:	"England")])
				for	crick	in	cricketers{
								print(crick)
				}
}

main()

Output	in	the	Xcode	console:

Cricketer(name:	"Kohli",	team:	"India")
Cricketer(name:	"Steve",	team:	"Australia")
Cricketer(name:	"Kane",	team:	"Kiwis")
Cricketer(name:	"Root",	team:	"England")

Adding	the	code	snippet	for	another	self-explanatory	example	here,	which	would
enhance	your	understanding:

import	Foundation

class	Cricketer	:	Sequence
{
				var	totalRunsScored	=	[Int](repeating:	0,	count:	3)
				
				private	let	_testRuns	=	0
				private	let	_ODIRuns	=	1
				private	let	_t20Runs	=	2
				
				var	testRuns:	Int
				{
								get	{	return	totalRunsScored[_testRuns]	}
								set(value)	{	totalRunsScored[_testRuns]	=	value	}
				}
				
				var	ODIRuns:	Int
				{
								get	{	return	totalRunsScored[_ODIRuns]	}
								set(value)	{	totalRunsScored[_ODIRuns]	=	value	}
				}
				
				var	t20Runs:	Int
				{
								get	{	return	totalRunsScored[_t20Runs]	}
								set(value)	{	totalRunsScored[_t20Runs]	=	value	}
				}
				
				var	totalRuns:	Int
				{
								return	totalRunsScored.reduce(0,	+)
				}
				
				subscript(index:	Int)	->	Int
				{
								get	{	return	totalRunsScored[index]	}
								set(value)	{	totalRunsScored[index]	=	value	}
				}
				
				func	makeIterator()	->	IndexingIterator<Array<Int>>
				{

								return	IndexingIterator(_elements:	totalRunsScored)
				}
}

func	main()
{
				let	cricketer	=	Cricketer()
				cricketer.testRuns	=	1200
				cricketer.ODIRuns	=	1800
				cricketer.t20Runs	=	600

				print("Total	Runs	Scored	=	\(cricketer.totalRuns)")
				
				for	s	in	cricketer
				{
								print(s)
				}
}

main()

Output	in	the	Xcode	console:

Total	Runs	Scored	=	3600
1200
1800
600

Summary:

When	you	are	in	a	situation	where	you	want	to	hide	the	complexity	of	a	data
structure	from	clients	and	have	a	single	interface	for	traversing	the	data
structures,	Iterator	design	pattern	serves	you	the	best.

21)	Behavioural	-	Interpreter	Design	Pattern
Definition:

Interpreters	are	present	everywhere	around	us.	In	design	patterns,	interpreter	is	a
component	that	processes	structured	text	data.	It	falls	under	behavioural	design
pattern.

Usage:

Let	us	use	interpreter	design	pattern	to	get	a	way	to	print	the	elements	of	a
collection	object	in	sequential	manner.	

import	UIKit
import	Foundation

protocol	Interpreter{
					func	hasNext()	->	Bool
					func	next()	->	String
}

protocol	Container{
				func	getInterpreter()	->	Interpreter
}

We	define	two	protocols	named	Interpreter	and	Container.	Interpreter	has	two
functions	to	check	if	the	next	element	is	present	in	array	after	every	iteration	and
to	return	the	element	(if	present).	Container	has	a	method	to	return	the
interpreter.

class	NameRepo	:	Container{
				let	names	=	["India"	,"Australia",	"England",	"NewZealand"]
				func	getInterpreter()	->	Interpreter	{
								return	NameInterpreter(names)
				}
}

We	then	define	a	class	called	NameRepo	conforming	to	Container	protocol.	In
our	main	function,	we	use	iterator	to	print	all	the	values	present	in	the	names
array.

private	class	NameInterpreter	:	Interpreter{
				var	index	=	-1
				var	names	=	[String]()
				
				init(_	names	:	[String]){
								self.names	=	names
				}
				
				func	hasNext()	->	Bool	{
								if	index	<	names.count	{
												return	true
								}
								return	false
				}
				
				func	next()	->	String	{
								if	self.hasNext(){
												index	=	index	+	1
												return	names[index]
								}	else{
												return	""
								}
				}
}

We	define	a	class	called	NameIterator	conforming	to	Iterator	protocol.	It	takes	a
parameter	of	type	String	array	during	its	initialisation.	

Let	us	write	a	main	function	to	see	the	code	in	action.

func	main(){
				let	nr	=	NameRepo()
				let	interpreter	=	NameInterpreter(nr.names)
		
				for	_	in	nr.names{
								interpreter.hasNext()
								print(interpreter.next())
				}
}

main()

Output	in	the	Xcode	console:

India
Australia
England
NewZealand

Summary:

Use	the	Interpreter	pattern	when	there	is	a	language	to	interpret,	and	you	can
represent	statements	in	the	language	as	abstract	syntax	trees.

22)	Behavioural	-	Mediator	Design	Pattern
Definition:
Mediator	is	a	behavioural	design	pattern	that	lets	us	define	a	component	that
encapsulates	relationships	between	a	set	of	components	(that	absolutely	makes
no	sense	to	have	direct	references	to	one	another)	to	make	them	independent	of
each	other.	Mediator	pattern	prevents	direct	communication	between	individual
components	by	sending	requests	to	a	central	component	that	knows	where	to
redirect	those	requests.
Usage:
Let	us	assume	we	are	designing	a	TV	umpire	decision	review	system	for	a
cricket	match.	When	an	on-field	umpire	does	not	have	enough	evidence	to	rule	a
batsman	out,	he	sends	the	request	to	the	TV	umpire	who	takes	a	look	at	the
replays	and	sends	a	command	to	the	monitor	operator	who	displays	the	final
decision	on	the	big	screen.	
Let’s	see	how	we	can	use	Mediator	design	pattern	to	design	such	a	decision
review	system.
import	UIKit
import	Foundation

protocol	Command{
				func	displayStatus()
}

We	write	a	protocol	Command	that	defines	a	function	called	displayStatus.

protocol	RemoteUmpire{
				func	registerTVDisplay(tvDisplay	:TVDisplay)
				func	registerTVOperator(tvOperator	:	TVOperator)
				func	isDecisionMade()	->	Bool
				func	setDecisionStatus(status	:	Bool)

}

We	write	another	protocol	called	RemoteUmpire	that	defines	a	handful	of
functionalities.	

1.	 1)	 The	remote	umpire	(also	called	TV	umpire)	has	to	register	for	TV
display	by	passing	a	parameter	of	type	TVDisplay	(to	be	defined).

2.	 2)	 The	remote	umpire	(also	called	TV	umpire)	has	to	register	for	TV
operator	by	passing	a	parameter	of	type	TVOperator	(to	be	defined).

3.	 3)	 A	function	named	isDecisionMade,	which	returns	a	boolean.
4.	 4)	 Another	function	to	set	the	status	of	decision	by	passing	a	boolean

argument.	

class	TVOperator	:	Command{
				var	tvUmpire:TVUmpire
				
				init(_	tvUmpire	:	TVUmpire){
								self.tvUmpire	=	tvUmpire
				}
				
				func	displayStatus()	{
								if	tvUmpire.isDecisionMade(){
												print("Decision	Made	and	Batsman	in	OUT")
												tvUmpire.setDecisionStatus(status:	true)
								}	else{
													print("Decision	Pending")
								}
				}
				
				func	getReady(){
								print("Ready	to	Display	Decision")
				}
}

We	define	a	class	called	TVOperator	conforming	to	Command	protocol.	It	takes
an	object	of	type	TVUmpire	(to	be	defined)	during	its	initialisation.

It	has	a	method	named	displayStatus,	which	based	on	the	TV	umpire’s	decision,
displays	a	batsman	out	or	not	on	the	big	screen	in	the	stadium.

class	TVDisplay	:	Command{
				var	tvUmpire:TVUmpire
				
				init(_	tvUmpire	:	TVUmpire)	{
								self.tvUmpire	=	tvUmpire
								tvUmpire.setDecisionStatus(status:	true)
				}

				func	displayStatus()	{
								print("Decision	made	and	permission	granted	to	display	the	decision	on	TV
Display")
								tvUmpire.setDecisionStatus(status:	true)
				}
}

We	define	a	class	called	TVDisplay	conforming	to	Command	protocol.	This
class	also	takes	an	object	of	type	TVUmpire	(to	be	defined)	for	its	initialisation.
Its	main	functionality	is	to	display	the	status	of	the	decision	based	on	the	input
given	by	the	TV	umpire.

class	TVUmpire	:	RemoteUmpire{
				private	var	tvOperator	:	TVOperator?
				private	var	tvDisplay	:	TVDisplay?
				private	var	decisionMade	:	Bool?
				
				func	registerTVDisplay(tvDisplay:	TVDisplay)	{
								self.tvDisplay	=	tvDisplay
				}
				
				func	registerTVOperator(tvOperator:	TVOperator)	{
								self.tvOperator	=	tvOperator
				}
				
				func	isDecisionMade()	->	Bool	{
								return	decisionMade!
				}

				
				func	setDecisionStatus(status:	Bool)	{
								self.decisionMade	=	status
				}
}

We	then	define	our	most	important	class	named	TVUmpire	conforming	to
RemoteUmpire	protocol.	It	has	three	private	optional	variables	defined:
tvOperator	of	type	TVOperator,	tvDisplay	of	type	TVDisplay,	and	a	boolean
named	decisonMade.

It	registers	for	TV	display	by	assigning	its	property	of	tvDisplay	to	parameter	of
type	TVDisplay	from	the	method	registerTVDisplay.	

It	registers	for	TV	operator	by	assigning	its	property	of	tvOperator	to	parameter
of	type	TVOperator	from	the	method	registerTVOperator.	

Let’s	now	write	our	main	function	and	see	how	the	above	code	comes	into
action.

func	main(){
				let	tvUmpire	=	TVUmpire()
				let	tvDisplayAtGround	=	TVDisplay(tvUmpire)
				let	tvOperatorAtGround	=	TVOperator(tvUmpire)
				tvUmpire.registerTVDisplay(tvDisplay:	tvDisplayAtGround)
				tvUmpire.registerTVOperator(tvOperator:	tvOperatorAtGround)
				tvOperatorAtGround.getReady()
				tvDisplayAtGround.displayStatus()
				tvOperatorAtGround.displayStatus()
}

main()

We	take	an	instance	of	TVUmpire	and	pass	the	same	instance	to	initialise
TVDisplay	and	TVOperator.	

TVUmpire	then	registers	for	TVDisplay	and	TVUmpire	by	passing	instances	of
TVDisplay	and	TVUmpire	respectively.	

Once	the	TV	umpire	has	made	his	decision,	TV	operator	on	the	ground	gets
ready	to	display	the	status	of	the	decision	accordingly	on	the	display	at	the
ground.

Output	in	the	Xcode	console:
Ready	to	Display	Decision
Decision	made	and	permission	granted	to	display	the	decision	on	TV
Display
Decision	Made	and	Batsman	in	OUT

Summary:

Use	a	Mediator	design	pattern	when	the	complexity	of	the	object	communication
begins	to	hinder	object	reusability.	Mediator	engages	in	two-way	communication
with	its	connected	components.

23)	Behavioural	-	Memento	Design	Pattern
Definition:

Memento	is	a	behavioural	design	pattern	that	lets	us	save	the	snapshots	of	the
object’s	internal	state	at	every	point	of	time	without	exposing	its	internal
structure.	This	helps	us	in	rolling	back	to	the	state	when	the	snapshot	was	taken.	

Usage:

Assume	we	are	adding	the	stats	of	a	cricketer	(number	of	runs	scored)	year	by
year	in	our	program,	and	at	some	point	we	want	to	trace	back	to	a	year	in	the
past	and	check	his	stats	up	until	that	point	in	time.

Let’s	define	a	Memento	class,	which	takes	an	argument	of	number	of	runs	scored
in	its	initialisation.

import	UIKit
class	Memento	{
				let	numberOfRunsScored	:	Int
				
				init(_	numberOfRunsScored	:	Int){
								self.numberOfRunsScored	=	numberOfRunsScored
				}
}

Let’s	assume	an	imaginary	hardware	named	StatsHolder,	which	displays	the
stats.	It	conforms	to	CustomStringConvertible	protocol.	It	takes	an	argument	of
number	of	runs	scored	in	its	initialisation.

class	StatsHolder	:	CustomStringConvertible{

				
				private	var	numberOfRunsScored	:	Int
				private	var	snapshots	:	[Memento]	=	[]
				private	var	currentIndex	=	0

				init(_	numberOfRunsScored	:	Int)	{
								self.numberOfRunsScored	=	numberOfRunsScored
								snapshots.append(Memento(numberOfRunsScored))
				}
				
				var	description:	String{
								return	"Total	Runs	scored	=	\(numberOfRunsScored)"
				}
}

All	the	properties	are	declared	private,	as	we	do	not	want	to	expose	the	internal
structure	of	our	hardware	to	the	client.

We	maintain	an	array	of	snapshots	of	type	Memento	so	that	we	can	restore	past
stats	just	by	passing	a	memento.	When	the	class	is	initialised,	currentIndex	starts
at	zero.

We	now	add	a	function	named	‘addStatsToHolder’,	which	takes	number	of	runs
as	parameter	and	returns	us	a	snapshot	of	type	Memento.	

	func	addStatsToHolder	(_	runsToBeAdded	:	Int)	->	Memento{
								numberOfRunsScored	+=	runsToBeAdded
								let	snapshot	=	Memento(runsToBeAdded)
								snapshots.append(snapshot)
								currentIndex	+=	1
								return	snapshot
				}

We	keep	appending	the	snapshot	of	Memento	initialised	to	the	array	and
increment	the	currentIndex	by	1.	

We	need	a	function	that	lets	us	restore	a	past	stat	by	passing	a	parameter	of	type
Memento.

	func	restoreToPastStat(_	memento	:	Memento?){
								if	let	snap	=	memento{
												numberOfRunsScored	=	snap.numberOfRunsScored
												snapshots.append(snap)
												currentIndex	=	snapshots.count	-	1
								}
				}

Note	that	memento	parameter	is	optional	because	for	the	currentIndex	value	of
0,	we	do	not	have	anything	to	restore	to.	We	change	the	numberOfRunsScored	to
the	value	of	snapshot.	We	append	the	snapshot	of	parameter	to	our	array	and
decrement	the	currentIndex	by	1.

Now,	we	need	methods	to	undo	and	redo	stats.

func	undoAStat()	->	Memento?{
								if	currentIndex	>	0{
												currentIndex	-=	1
												let	snap	=	snapshots[currentIndex]
												numberOfRunsScored	=	snap.numberOfRunsScored
												return	snap
								}
								return	nil
				}
				
				func	redoAStat()	->	Memento?{
								if	currentIndex+1	<	snapshots.count{
												currentIndex	+=	1
												let	snap	=	snapshots[currentIndex]
												numberOfRunsScored	=	snap.numberOfRunsScored
												return	snap
								}
								return	nil
				}

Note	that	the	returned	Memento	is	optional,	as	we	may	not	have	anything	to
undo	for	the	first	addition	of	the	stat	and	nothing	to	redo	after	the	final	addition
of	the	stat.	In	these	cases,	we	return	a	nil.

In	undoAStat	method,	we	check	if	the	currentIndex	>	0.	If	no,	we	return	nil.	If
yes,	we	decrement	the	currentIndex	by	1	and	get	the	snapshot	at	currentIndex.
We	then	change	the	numberOfRunsScored	to	the	value	present	in	the	snapshot.

In	redoAStat	method,	we	check	if	the	currentIndex	is	less	than	the	count	of
snapshots	decremented	by	1.	If	no,	we	return	nil.	If	yes,	we	increment	the
currentIndex	by	1	and	get	the	snapshot	at	the	currentIndex.	We	then	change	the
numberOfRunsScored	to	the	value	present	in	the	snapshot.

We	are	done	with	our	set	up	of	Memento	design	pattern.	Let’s	see	how	we
implement	this	pattern.

func	main(){
				let	statsHolder	=	StatsHolder(1200)	//1200	is	the	first	stat	(number	of	runs)	we
add	to	stats	holder
				let	stat1	=	statsHolder.addStatsToHolder(1400)
				let	stat2	=	statsHolder.addStatsToHolder(700)
				
				print("a	-	",	statsHolder)
				
				//undo	Top	most	operation
				statsHolder.undoAStat()
				print("b	-	",	statsHolder)
				
				//undo	Top	most	operation
				statsHolder.undoAStat()
				print("c	-	",	statsHolder)
				
				//restoreToStat2
				statsHolder.redoAStat()
				print("d	-	",	statsHolder)
				//There	is	no	memento/snapshot	when	the	StatsHolder	is	initialised
}

In	the	main	method,	we	initialise	the	StatsHolder	by	passing	1200	runs	as
parameter.	We	then	add	a	couple	of	stats	by	using	addStatsToHolder	method	by
passing	1400	and	700	runs	as	parameters.

We	then	undo	the	last	two	stat	additions	by	using	undoAStat	method	on

statsHolder.	We	then	redo	the	last	operation	by	using	redoAStat	method	on
statsHolder.

Now	run	the	main()	method.

main()

Output	in	the	Xcode	console:

a	-		Total	Runs	scored	=	3300
b	-		Total	Runs	scored	=	1400
c	-		Total	Runs	scored	=	1200
d	-		Total	Runs	scored	=	1400

Initially,	we	added	three	stats,	which	takes	the	total	to	3300.	Then	we	undo	one
operation,	which	takes	the	total	to	1400	(subtracting	700).	One	more	undo	takes
us	to	the	initial	state	of	1200.	We	redo	the	last	undo	operation,	which	again	takes
us	back	to	1400.	

Summary:	

If	your	application	demands	to	save	checkpoints	as	the	user	progresses	through
the	app,	go	for	Memento	design	pattern.	This	helps	in	restoring	the	checkpoints
at	a	later	point	of	time.

24)	Behavioural	-	Null	Object	Design	Pattern
Definition:

In	Object	Oriented	Programming,	null	is	an	object	that	has	no	referenced	value.
When	an	object	A	tries	to	use	an	object	B,	object	A	assumes	that	object	B	is	not
nil.	When	there	is	no	option	of	telling	A	not	to	use	instance	of	B	when	it	has	no
value,	Null	Object	design	pattern	comes	into	play.	Null	Object	is	a	behavioural
design	pattern	that	simplifies	the	use	of	undefined	dependencies.

Usage:

Let’s	see	how	this	design	pattern	can	be	used	in	code.	

Assume	we	have	a	cricket	match	happening	at	a	stadium	and	users	receive	live
updates	of	the	score	on	their	devices	(iPad	or	iPhone).	By	default,	we	show	the
score	on	the	interface.	But	on	iPad,	along	with	the	live	score,	we	also	show
bowlers	and	batsman	stats,	as	there	is	available	screen	estate.	But	the	same
interface	looks	congested	on	an	iPhone	display.	So,	we	refrain	ourselves	from
showing	batsman	and	bowler	stats	for	iPhone	display.	

import	Foundation

protocol	Log
{
				func	bowlerStatsFromCurrentMatch(_	stats:	String)
				func	batsmenStatsFromCurrentMatch(_	stats:	String)
}

We	have	a	protocol	named	Log	that	defines	two	methods	to	show	bowlers	and
batsmen	stats	from	the	current	match,	which	takes	stats	as	input	in	String

format.	

class	StatsDisplayLog	:	Log
{
				func	bowlerStatsFromCurrentMatch(_	stats:	String)	{
								print(stats)
				}
				
				func	batsmenStatsFromCurrentMatch(_	stats:	String)	{
									print(stats)
				}
}

class	NoDisplayStatsLog	:	Log
{
				func	bowlerStatsFromCurrentMatch(_	stats:	String)	{}
				func	batsmenStatsFromCurrentMatch(_	stats:	String)	{}
}

We	now	define	two	classes,	StatsDisplayLog	and	NoDisplayStatsLog,	both
conforming	to	Log	protocol.	The	only	difference	is	the	implementation	of	these
methods	in	the	classes,	which	is	very	straight	forward.	We	show	the	stats	in
StatsDisplayLog	and	do	not	show	any	stats	in	NoDisplayStatsLog.	

class	UserInterface
{
				var	log:	Log
				var	runsScored	=	0
				var	wicketsTaken	=	0

				init(_	log:	Log)
				{
								self.log	=	log
				}

				func	wicketTaken	(){
								wicketsTaken	+=	1
								log.bowlerStatsFromCurrentMatch("Total	Wickets	:	\(wicketsTaken)")
				}

				
				func	runsScored(numberOFRunsScored	:	Int){
								runsScored	+=	numberOFRunsScored
								log.batsmenStatsFromCurrentMatch("Total	Runs	:	\(runsScored)")
				}
				
}

We	define	a	class	called	UserInterface,	which	takes	care	of	the	logic	behind	what
to	display	to	the	users	on	their	devices.	This	class	takes	a	parameter	of	type	Log
during	its	initialisation.	There	are	two	methods	to	update	the	number	of	wickets
taken	and	number	of	runs	scored,	and	when	an	event	happens	in	the	match.	With
the	help	of	instance	of	Log	class,	these	stats	are	shown	on	the	interface.
Let’s	now	write	a	function	called	main.

func	main()
{
				let	ipadLog	=	StatsDisplayLog()
				let	iPAdUserInterface	=	UserInterface(ipadLog)
				iPAdUserInterface.runsScored(numberOFRunsScored:	4)
				iPAdUserInterface.runsScored(numberOFRunsScored:	3)
				iPAdUserInterface.wicketTaken()
}

main()
Output	in	the	Xcode	console:

Total	Runs	:	4
Total	Runs	:	7
Total	Wickets	:	1
This	is	what	a	user	sees	on	his	iPad,	as	we	are	taking	an	instance	of
StatsDisplayLog	for	iPad	interface.	Now,	add	the	below	code	to	the	main
function:

let	iPhoneLog	=	NoDisplayStatsLog()
let	iPhoneUserInterface	=	UserInterface(iPhoneLog)
iPhoneUserInterface.runsScored(numberOFRunsScored:	6)
iPhoneUserInterface.runsScored(numberOFRunsScored:	2)

We	can	observe	that	there	is	no	change	in	the	output	in	the	Xcode	console.	This
is	because	we	are	using	an	instance	of	NoDisplayStatsLog,	which	is	used	for	an
iPhone	interface.

Summary:

Null	Object	design	pattern	can	be	used	in	situations	where	real	objects	are
replaced	by	null	objects	when	the	object	is	expected	to	do	nothing.

25)	Behavioural	-	Observer	Design	Pattern
Definition:

Observer	design	pattern	is	used	when	we	want	an	object	(called	observable),
which	maintains	a	list	of	objects	(called	observers),	to	notify	them	when
observable	does	something	or	its	properties	change	or	some	external	change
occurs.	The	process	of	notifying	is	done	through	events	generated	by
observable.	

Usage:	

import	Foundation

protocol	Invocable	:	class
{
				func	invoke(_	data:	Any)
}

public	protocol	Disposable
{
				func	dispose()
}

public	class	Event<T>
{
				public	typealias	EventHandler	=	(T)	->	()
				
				var	eventHandlers	=	[Invocable]()
				
				public	func	raise(_	data:	T)

				{
								for	handler	in	eventHandlers
								{
												handler.invoke(data)
								}
				}
				
				public	func	addHandler<U:	AnyObject>
						(target:	U,	handler:	@escaping	(U)	->	EventHandler)	->	Disposable
				{
								let	subscription	=	Subscription(
												target:	target,	handler:	handler,	event:	self)
								eventHandlers.append(subscription)
								return	subscription
				}
}

class	Subscription<T:	AnyObject,	U>	:	Invocable,	Disposable
{
				weak	var	target:	T?	
				let	handler:	(T)	->	(U)	->	()
				let	event:	Event<U>
				
				init(target:	T?,
									handler:	@escaping	(T)	->	(U)	->	(),
									event:	Event<U>)
				{
								self.target	=	target
								self.handler	=	handler
								self.event	=	event
				}
				
				func	invoke(_	data:	Any)	{
								if	let	t	=	target	{
												handler(t)(data	as!	U)
								}
				}
				
				func	dispose()

				{
								event.eventHandlers	=	event.eventHandlers.filter	{	$0	as	AnyObject?	!==
self	}
				}
}

This	is	how	we	define	observers	and	observables.	You	can	feel	free	to	copy	and
paste	this	without	any	modifications	to	use	Observer	design	patterns.	
I	will	not	be	discussing	it	in	detail,	as	the	main	intention	is	to	learn	about	design
patterns.	

Now,	assume	a	cricket	match	is	happening.	There	is	a	scoreboard	on	the	ground,
which	is	updated	whenever	any	event	happens	(run	hit/batsman	out/fielder
taking	catch,	etc).	For	the	sake	of	simplicity,	let	us	only	talk	about	the	batting
team	making	runs	event.

Let	us	define	scoreboard	class.

class	ScoreBoardInTheGround{
				let	batsmenHitRun	=	Event<Int>()
				init(){}
				func	updateScore(){
								
				}
}

ScoreBoardInTheGround	can	be	initialised	without	any	arguments.	It	has	an
event	batsmenHitRun	and	a	method	to	update	the	score.	This	is	our	observable,
which	broadcasts	events	whenever	batsman	hits	runs.

When	the	scoreboard	on	the	ground	is	updated,	the	same	update	has	to	reach	the
servers	of	a	mobile	app,	where	millions	of	people	follow	the	match	updates.
There	are	many	such	servers,	which	are	called	observers,	and	they	need	to	know
whenever	the	state	of	ScoreBoardInTheGround	changes.	Let	us	define	our
observable	class.

class	ScoreUpdateInServers{
				init(){
								let	scoreBoard	=	ScoreBoardInTheGround()

								let	subscriber	=	scoreBoard.batsmenHitRun.addHandler(target:	self,
handler:	ScoreUpdateInServers.showScoreInApp)
								
								//simualte	batsman	hitting	runs	in	the	ground
								scoreBoard.batsmenHitRun.raise(6)
								//get	rid	of	the	description
								subscriber.dispose()
				}
				func	showScoreInApp(score:	Int){
								print("Score	Now	is	:	\(score)	runs")
				}
}

When	ScoreUpdateInServers	is	initialised,	we	take	an	instance	of
ScoreBoardInTheGround	and	add	a	subscriber	to	batsmanHitRun	event	with	the
help	of	a	handler.

Then	we	are	simulating	an	event	of	a	batsman	hitting	six	runs	in	the	match	and
the	scoreboard	on	the	ground	needs	to	broadcast	this	event	to	the	servers.	Then
we	also	get	rid	of	the	subscription	with	the	help	of	a	dispose	function.

Servers	of	the	mobile	app	have	a	method	to	show	the	score	in	the	display,	which
takes	the	score	as	the	input	parameter.	For	the	sake	of	simplicity,	we	just	print
the	score	in	this	method.

Now,	add	the	below	code	snippet	to	see	the	code	in	action.

func	main(){
				let	dummy	=	ScoreUpdateInServers()
}

main()

Output	in	the	Xcode	console:

Score	Now	is	:	6	runs

Summary:

If	you	want	to	subscribe/unsubscribe	to	objects	dynamically,	Observer	design
pattern	is	the	best	possible	way.	Note	the	fact	that	subscribers	are	notified	in
random	order.

26)	Behavioural	-	State	Design	Pattern
Definition:

State	is	a	behavioural	design	pattern	that	is	used	to	alter	the	behaviour	of	an
object	as	its	internal	state	changes.	The	object	will	appear	to	change	its	class.

Usage:

Let’s	assume	a	player	auction	is	going	on	for	some	private	cricket	league.	A
player	is	either	in	unsold	state	or	sold	state	with	the	name	of	the	team	attached	to
him.	We	now	see	how	State	design	pattern	can	be	used	in	this	context.

import	UIKit

protocol	State	{
				func	isSold(playerAuction:	PlayerAuction)	->	Bool
				func	whichTeam(playerAuction:	PlayerAuction)	->	String?
}

We	have	a	protocol	named	State,	which	defines	two	methods:

1.	 1)	 isSold	takes	an	object	of	type	PlayerAuction	(to	be	defined)	and
returns	true/false.

2.	 2)	 whichTeam	takes	an	object	of	type	PlayerAuction	(to	be	defined)	and
returns	an	optional	(as	an	unsold	player	does	not	have	any	team	associated
with	him).

We	then	define	states	in	which	a	player	object	can	be	in.

class	IsUnsoldState:	State	{
				func	isSold(playerAuction:	PlayerAuction)	->	Bool	{	return	false	}
				
				func	whichTeam(playerAuction:	PlayerAuction)	->	String?	{	return	nil	}
}

class	IsSoldState:	State	{
				let	teamName:	String
				
				init(teamName:	String)	{
								self.teamName	=	teamName
				}
				
				func	isSold(playerAuction:	PlayerAuction)	->	Bool	{
								return	true
				}
				
				func	whichTeam(playerAuction:	PlayerAuction)	->	String?	{
								return	teamName
				}
}

1.	 1)	 First	one	is	IsUnsoldState	and	it	conforms	to	State	protocol.	It	returns
false	when	called	isSold	method	and	a	nil	when	called	whichTeam.

2.	 2)	 Second	one	is	IsSoldState	and	it	conforms	to	State	protocol.	It	takes
the	argument	of	teamName	of	type	String	for	its	initialisation.	It	returns	true
when	called	isSold	method	and	a	nil	when	called	whichTeam.

We	now	define	the	most	important	class,	PlayerAuction:

class	PlayerAuction	{
				private	var	state:	State	=	IsUnsoldState()
				
				var	isSold:	Bool	{
								get	{
												return	state.isSold(playerAuction:	self)

								}
				}
				
				var	teamName:	String?	{
								get	{
												return	state.whichTeam(playerAuction:	self)
								}
				}
				
				func	changeStateToSold(teamName:	String)	{
								state	=	IsSoldState(teamName:	teamName)
								
				}
				
				func	changeStateToUnSold()	{
								state	=	IsUnsoldState()
				}
				
}

It	has	a	private	variable	of	type	State,	which	has	a	default	value	of
IsUnsoldState.	We	then	get	and	set	two	variables,	isSold	and	teamName,	with
the	help	of	state	property	and	passing	an	argument	of	type	self.

We	then	define	two	methods:

1.	 1)	 changeStateToSold,	which	takes	an	argument	of	type	String,	and	the
state	of	player	object	is	changed	to	IsSoldState	by	passing	the	argument.

2.	 2)	 changeStateToUnsold,	where	player’s	state	is	changed	to	instance	of
IsUnsoldState.

Let	us	now	write	a	main	method	to	see	this	design	pattern	in	action:

func	main(){
				let	playerAuction	=	PlayerAuction()
				print(playerAuction.isSold,	playerAuction.teamName)
				playerAuction.changeStateToSold(teamName:	"Chennai	Super	Kings")

				print(playerAuction.isSold,	playerAuction.teamName!)
}

main()

We	start	with	taking	an	instance	of	class	PlayerAuction.	Then	change	the	default
status	of	unsold	to	sold	state	by	passing	a	team	name	Chennai	Super	Kings.

Output	in	the	Xcode	console:

false	nil
true	Chennai	Super	Kings

For	the	unsold	state,	isSold	returns	a	false	and	whichTeam	returns	nil.	As	the
state	is	changed,	isSold	returns	true	and	whichTeam	returns	Chennai	Super
Kings.

Summary:

When	you	are	in	a	situation	where	the	behaviour	of	an	object	should	be
influenced	by	its	state,	the	number	of	states	is	big,	and	the	state	related	code
changes	frequently,	State	design	pattern	serves	your	purpose.

27)	Behavioural	-	Template	Design	Pattern
Definition:

Template	is	a	behavioural	design	pattern	that	helps	to	divide	algorithms	into
common	parts	and	specifics	through	inheritance.	In	simple	words,	base	class
declares	algorithm	‘placeholders’	and	derived	classes	write	the	concrete
implementation	of	placeholders	(or	algorithms).

Usage:

Let	us	consider	a	situation	where	we	are	building	a	template	for	a	cricket	team.
The	main	motto	is	to	decide	the	team’s	composition	based	on	the	pitch	and
weather	conditions	(how	many	batsmen	to	play,	how	many	bowlers	to	play,	how
many	fast	bowlers,	how	many	spinners,	etc).	A	single	template	for	all	the	pitch
conditions	will	not	help.

Let	us	see	how	we	can	use	Template	design	pattern	for	the	same	use	case.

import	UIKit
import	Foundation

class	TeamTemplate{

				func	buildTeam(){
								pickBatsmen()
								pickBowlers()
								pickAllRounders()
								pickWicketKeeper()
								print("\nTeam	Set	For	the	match")
				}

				
				func	pickBatsmen(){
								
				}
				
				func	pickBowlers(){
								
				}
				
				func	pickAllRounders(){
								
				}
				
				private	func	pickWicketKeeper(){
								print("Only	one	WK	available	and	he	is	picked	by	default")
				}
}

We	define	a	base	class	called	TeamTemplate,	which	will	later	be	inherited	by
other	classes.	

We	define	a	function	called	pickWicketKeeper	and	declare	it	private	because
there	is	only	one	WicketKeeper	available	in	the	squad,	and	he	is	in	the	playing
team	by	default.	No	one	has	the	authority	to	change	it.

We	also	define	empty	functions	called	pickBatsmen,	pickBowlers,	and
pickAllRounders,	whose	implementations	are	defined	in	the	subclasses	through
inheritance.

We	now	define	three	different	classes	with	TeamTemplate	as	BaseClass	where
we	write	the	concrete	implementation	of	teamBuilding	method.

class	SeamingPitchTeamTemplate	:	TeamTemplate{
				override	func	pickBatsmen()	{
								print("Picking	6	batsmen")
				}
				
				override	func	pickBowlers()	{
								print("Picking	3	Fast	Bowlers")

				}
				
				override	func	pickAllRounders()	{
								print("Picking	1	Pace	AllRounder")
				}
}

class	SpinPitchTeamTemplate	:	TeamTemplate{
				override	func	pickBatsmen()	{
								print("Picking	5	Batsmen")
				}
				
				override	func	pickBowlers()	{
								print("Picking	2	Fast	Bowlers	and	2	Spinners")
				}
				
				override	func	pickAllRounders()	{
								print("Picking	2	Spin	AllRounder")
				}
}

class	BattingPitchTeamTemplate	:	TeamTemplate{
				override	func	pickBatsmen()	{
								print("Picking	7	Batsmen")
				}
				
				override	func	pickBowlers()	{
								print("Picking	2	Fast	Bowlers	and	1	Spinners")
				}
				
				override	func	pickAllRounders()	{
								print("Picking	1	Batting	AllRounder")
				}
}

We	define	three	templates	named	SeamingPitchTeamTemplate,
SpinPitchTeamTemplate,	and	BattingPitchTeamTemplate,	with	different	method
definitions	for	pickBatsmen,	pickBowlers,	and	pickAllRounders.

Let	us	now	write	our	main	method	and	see	the	code	in	action.

func	main(){
				var	finalTeam	:	TeamTemplate	=	SeamingPitchTeamTemplate()
				finalTeam.buildTeam()
				
				
}

main()

Assume	we	are	picking	a	team	for	seam	friendly	pitch	and	we	take	an	instance	of
SeamingPitchTeamTemplate	and	call	the	buildTeam	method.

Output	in	the	Xcode	console:

Picking	6	batsmen
Picking	3	Fast	Bowlers
Picking	1	Pace	AllRounder
Only	one	WK	available	and	he	is	picked	by	default

Team	Set	For	the	match

Now,	we	change	the	team	compositions	by	taking	instances	of	other	templates
and	observe	the	output.

func	main(){
				var	finalTeam	:	TeamTemplate	=	SeamingPitchTeamTemplate()
				finalTeam.buildTeam()
				
				print("\n***Pitch	Changed***\n")
				finalTeam	=	SpinPitchTeamTemplate()
				finalTeam.buildTeam()
				
}

main()

Output	in	the	Xcode	console:

Picking	6	batsmen
Picking	3	Fast	Bowlers
Picking	1	Pace	AllRounder
Only	one	WK	available	and	he	is	picked	by	default

Team	Set	For	the	match

Pitch	Changed

Picking	5	Batsmen
Picking	2	Fast	Bowlers	and	2	Spinners
Picking	2	Spin	AllRounder
Only	one	WK	available	and	he	is	picked	by	default

Team	Set	For	the	match

Now	change	the	main	method	to:

func	main(){
				var	finalTeam	:	TeamTemplate	=	SeamingPitchTeamTemplate()
				finalTeam.buildTeam()
				
				print("\n***Pitch	Changed***\n")
				finalTeam	=	SpinPitchTeamTemplate()
				finalTeam.buildTeam()
				
				print("\n***Pitch	Changed***\n")
				finalTeam	=	BattingPitchTeamTemplate()
				finalTeam.buildTeam()
}

main()

Output	in	the	Xcode	console:

Picking	6	batsmen
Picking	3	Fast	Bowlers
Picking	1	Pace	AllRounder

Only	one	WK	available	and	he	is	picked	by	default

Team	Set	For	the	match

Pitch	Changed

Picking	5	Batsmen
Picking	2	Fast	Bowlers	and	2	Spinners
Picking	2	Spin	AllRounder
Only	one	WK	available	and	he	is	picked	by	default

Team	Set	For	the	match

Pitch	Changed

Picking	7	Batsmen
Picking	2	Fast	Bowlers	and	1	Spinners
Picking	1	Batting	AllRounder
Only	one	WK	available	and	he	is	picked	by	default

Team	Set	For	the	match

Summary:

When	you	are	in	a	situation	to	build	a	template/base	class,	which	is	open	for
extension	but	closed	for	modification,	or	in	simple	words,	subclasses	should	be
able	to	extend	the	base	algorithm	without	altering	its	structure,	Template	design
pattern	suits	the	best.

28)	Behavioural	-	Visitor	Design	Pattern
Definition:

Visitor	is	a	behavioural	design	pattern	that	lets	us	define	a	new	operation	without
changing	the	classes	of	the	objects	on	which	it	operates.	We	use	it	when	we	do
not	want	to	keep	modifying	every	class	in	the	hierarchy.

Usage:

Consider	a	situation	where	we	are	designing	a	check-out	counter	in	a	shop	that
sells	cricket	accessories.	It	offers	discounts	on	selective	brands	and	selective
items.	Let	us	see	how	we	can	use	Visitor	pattern	to	design	such	a	system.

import	Foundation
import	UIKit

protocol	CricketAccessory{
				func	accept(counter	:	CheckoutCounter)	->	Int
}

We	define	a	protocol	called	CricketAccessory	with	a	function	called	accept,
which	takes	a	parameter	of	type	CheckoutCounter	(to	be	defined)	and	returns	an
integer.

class	CricketBat	:	CricketAccessory{
				private	var	price	:	Double
				private	var	brand	:	String
				
				init(_	price	:	Double,	_	brand:String)	{

								self.price	=	price
								self.brand	=	brand
				}
				
				public	func	getPrice()	->	Double{
								return	price
				}
				
				public	func	getBrand()	->	String{
								return	brand
				}
				func	accept(counter	:	CheckoutCounter)	->	Int	{
								return	counter.moveToCounter(bat:	self)
				}
}

We	then	define	a	class	called	CricketBat	conforming	to	CricketAccessory
protocol.	It	has	two	private	variables	defined:	price	of	type	Double	and	brand	of
type	String.	We	also	define	two	public	methods	called	getPrice	and	getBrand	to
return	price	and	brand	of	the	bat	respectively.

class	CricketBall	:	CricketAccessory{

				private	var	type	:	String
				private	var	price	:	Double

				init(_	type	:	String,	_	price	:	Double){
								self.type	=	type
								self.price	=	price

				}

				public	func	getType()	->	String{
								return	type
				}

				public	func	getPrice()	->	Double{
								return	price
				}

				func	accept(counter	:	CheckoutCounter)	->	Int	{
									return	counter.moveToCounter(ball:	self)
				}

}

We	define	another	class	called	CricketBall	conforming	to	CricketAccessory
protocol.	This	is	very	much	similar	to	CricketBat	class.

protocol	CheckoutCounter	{
				func	moveToCounter(bat	:	CricketBat)	->	Int
				func	moveToCounter(ball	:	CricketBall)	->	Int
}

We	define	a	protocol	called	CheckoutCounter,	which	has	two	methods	with	the
same	name	but	differs	when	it	comes	to	parameter	types.
class	CashCounter	:CheckoutCounter{
				func	moveToCounter(bat:	CricketBat)	->	Int	{
								var	cost	:	Int	=	0
								if	bat.getBrand()	==	"MRF"{
												cost	=	Int(0.9	*	bat.getPrice())
								}	else{
												cost	=	Int(bat.getPrice())
								}
								print("Bat	brand	:	\(bat.getBrand())	and	price	is	:	\(cost)	")
								return	cost
				}

				func	moveToCounter(ball:	CricketBall)	->	Int	{
								
								print("Ball	Type	:	\(ball.getType())	and	price	is	:	\(ball.getPrice())	")
								return	Int(ball.getPrice())
				}
}

We	now	define	a	class	called	CashCounter	conforming	to	CheckoutCounter.	We
can	see	that,	for	a	cricket	bat	of	brand	MRF,	we	give	a	discount	of	10%.	In	the
future,	if	we	want	to	add	any	new	brands	or	remove	discounts	on	existing

brands,	we	can	make	all	the	changes	here	with	no	changes	required	at	the	client
end.
Let	us	now	write	a	main	function	to	see	the	code	in	action.
func	main(){
				print("Main")
				func	finalPriceCalculation(accessories	:	[CricketAccessory])	->	Int{
								var	checkout	=	CashCounter()
								var	cost	=	0
								for	item	in	accessories{
												cost	+=	item.accept(counter:	checkout)
								}
								print("Total	cart	value	:	\(cost)")
								return	cost
				}
				
				var	cartItems	=	[CricketAccessory]()
				let	mrfBat	=	CricketBat(2000,	"MRF")
				let	brittaniaBat	=	CricketBat(1500,	"Brittania")
				let	tennisBall	=	CricketBall("Tennis",	120)
				let	leatherBall	=	CricketBall("Leather",	200)
				cartItems.append(mrfBat)
				cartItems.append(brittaniaBat)
				cartItems.append(tennisBall)
				cartItems.append(leatherBall)

				var	cost	=	finalPriceCalculation(accessories:	cartItems)
				print("Checked	Out	with	Bill	Amount	:	\(cost)")
}

main()

We	define	a	function	called	finalPriceCalculation,	which	takes	an	array	of	type
CricketAccessory	and	returns	the	final	cart	value.	

Output	in	the	Xcode	console:

Main
Bat	brand	:	MRF	and	price	is	:	1800	
Bat	brand	:	Brittania	and	price	is	:	1500	

Ball	Type	:	Tennis	and	price	is	:	120.0	
Ball	Type	:	Leather	and	price	is	:	200.0	
Total	cart	value	:	3620
Checked	Out	with	Bill	Amount	:	3620

You	can	see	the	MRF	bat	is	checked	out	at	discounted	price.	

Let	us	now	change	the	CashCounter	class	to	the	following:

class	CashCounter	:CheckoutCounter{
				func	moveToCounter(bat:	CricketBat)	->	Int	{
								var	cost	:	Int	=	0
								if	bat.getBrand()	==	"Brittania"{
												cost	=	Int(0.8	*	bat.getPrice())
								}	else{
												cost	=	Int(bat.getPrice())
								}
								print("Bat	brand	:	\(bat.getBrand())	and	price	is	:	\(cost)	")
								return	cost
				}

				func	moveToCounter(ball:	CricketBall)	->	Int	{
								
								print("Ball	Type	:	\(ball.getType())	and	price	is	:	\(ball.getPrice())	")
								return	Int(ball.getPrice())
				}
}

Now,	we	are	removing	the	discount	on	MRF	and	giving	a	20%	discount	on
Brittania	bats.	

The	same	main	method	gives	a	different	output	in	the	Xcode	console:

Main
Bat	brand	:	MRF	and	price	is	:	2000	
Bat	brand	:	Brittania	and	price	is	:	1200	
Ball	Type	:	Tennis	and	price	is	:	120.0	
Ball	Type	:	Leather	and	price	is	:	200.0	
Total	cart	value	:	3520

Checked	Out	with	Bill	Amount	:	3520

Summary:

When	you	are	in	a	situation	where	you	might	want	to	add	a	new	action	and	have
that	new	action	entirely	defined	within	one	of	the	visitor	classes	rather	than
spread	out	across	multiple	classes,	Visitor	design	pattern	serves	you	the	best.

Final	note:

Final	note:

It	is	not	necessary	to	learn	all	the	patterns	and	their	applications	by	heart.	The
main	intention	is	to	identify	the	use	cases	and	problems,	which	the	design
patterns	are	meant	to	address.	Then	applying	a	specific	design	pattern	is	just	a
matter	of	using	the	right	tool	at	the	right	time	for	the	right	job.	It's	the	job	that
must	be	identified	and	understood	before	the	tool	can	be	chosen.

Happy	Coding!!!

	Contents
	Design Patterns in Swift
	StoryShop
	Copyright
	Half Title
	Preface
	Introduction
	Part One - SOLID
	1) SOLID - Single Responsibility Principle (SRP)
	2) SOLID - Open Closed Principle (OCP)
	3) SOLID - Liskov Substitution Principle (LSP)
	4) SOLID - Interface Segregation Principle (ISP)
	5) SOLID - Dependency Inversion Principle (DIP)

	Part Two - Creational
	6) Creational - Factory Design Pattern
	8) Creational - Prototype Design Pattern
	9) Creational - Singleton Design Pattern

	Part Three - Structural
	10) Structural - Adapter Design Pattern
	11) Structural - Bridge Design Pattern
	12) Structural - Composite Design Pattern
	13) Structural - Decorator Design Pattern
	14) Structural - Facade Design Pattern
	15) Structural - FlyWeight Design Pattern
	16) Structural - Proxy Design Pattern

	Part Four - Behavioural
	17) Behavioural - Chain of Responsibility Design Pattern
	18) Behavioural - Strategy Design Pattern
	20) Behavioural - Iterator Design Pattern
	21) Behavioural - Interpreter Design Pattern
	22) Behavioural - Mediator Design Pattern
	23) Behavioural - Memento Design Pattern
	24) Behavioural - Null Object Design Pattern
	25) Behavioural - Observer Design Pattern
	26) Behavioural - State Design Pattern
	27) Behavioural - Template Design Pattern
	28) Behavioural - Visitor Design Pattern

	Final note:

